2014, Número 6
<< Anterior Siguiente >>
Rev Med Inst Mex Seguro Soc 2014; 52 (6)
Cómo combatir con bacterias a las enfermedades infecciosas parasitarias El caso de Wolbachia pipientis
March-Rosselló GA, Eiros-Bouza JM
Idioma: Español
Referencias bibliográficas: 56
Paginas: 654-659
Archivo PDF: 76.07 Kb.
RESUMEN
En la naturaleza ningún individuo puede vivir de forma
aislada, de tal forma que los organismos vivos se ven
obligados a interactuar unos con otros. Esta necesidad
ha llevado a que diferentes organismos establezcan
relaciones heterogéneas para mejorar su capacidad de
adaptación al medio, obteniendo así ventajas evolutivas.
Estas relaciones a veces son tan intensas que a la
larga los organismos pueden perder su identidad individual.
Un ejemplo de estas asociaciones son las endosimbióticas,
en las cuales generalmente organismos
eucariotas albergan a diferentes organismos procariotas.
La bacteria endosimbiótica
Wolbachia pipientis es
una especie descrita en 1924 por Hertig y
Wolbach.
Este microorganismo se puede aislar en gran variedad
de organismos eucariotas, con los que mantiene diferentes
vínculos. Hasta el momento solo se ha descrito
esta especie con 11 serogrupos enumerados de la A a
la K dentro del género
Wolbachia. En este trabajo se
pretende ilustrar la relación de
Wolbachia pipientis con
las fi larias patógenas humanas y con los artrópodos,
así como describir las implicaciones de esta bacteria en
el tratamiento de las fi lariasis. Finalmente, se pretende
exponer los estudios recientes que han apuntado el
uso de cepas virulentas de
Wolbachia pipientis creadas
artifi cialmente que una vez inoculadas en los vectores
transmisores de enfermedades desarrollan efectos
negativos en estos, para lograr la erradicación de enfermedades
infecciosas transmitidas por mosquitos contra
las cuales, de momento, no existe tratamiento o no se
ha logrado impedir su transmisibilidad.
REFERENCIAS (EN ESTE ARTÍCULO)
Margulis L. Symbiosis and evolution. Sci Am. 1971;225 (2):48-57.
Kutschera U, Niklas KJ. Endosymbiosis, cell evolution, and speciation. Theory Biosci. 2005;124(1):1-24.
Wernegreen JJ. Endosymbiosis: Lessons in confl ict resolution. PLoS Biol. 2004;2(3):E68.
Fox R. Symbiogenesis. J R Soc Med. 2004;97(12):559.
Hertig M, Wolbach SB. Studies on Rickettsia-like micro-organisms in insects. J Med Res. 1924;44(3): 329-74.7.
Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C. How many wolbachia supergroups exist? Mol Biol Evol. 2002;19(3):341-6.
Buttner DW, Wanji S, Bazzocchi C, Bain O, Fischer P. Obligatory symbiotic Wolbachia endobacteria are absent from Loa loa. Filaria J. 2003;2(1):10.
Kramer LH, Passeri B, Corona S, Simoncini L, Casiraghi M. Immunohistochemical/immunogold detection and distribution of the endosymbiont Wolbachia of Dirofi laria immitis and Brugia pahangi using a polyclonal antiserum raised against WSP (Wolbachia surface protein). Parasitol Res. 2003;89(5):381-6.
Casiraghi M, Werren JH, Bazzocchi C, Biserni A, Bandi C. dnaA gene sequences from Wolbachia pipientis support subdivision into supergroups and provide no evidence for recombination in the lineages infecting nematodes. Parassitologia. 2003;45(1):13-8.
Taylor MJ, Bandi C, Hoerauf A. Wolbachia bacterial endosymbionts of fi larial nematodes. Adv Parasitol. 2005;60:245-84.
Landmann F, Foster JM, Slatko B, Sullivan W. Asymmetric Wolbachia segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues. PLoS Negl Trop Dis. 2010;4(7):e758.
McGarry HF, Egerton GL, Taylor MJ. Population dynamics of Wolbachia bacterial endosymbionts in Brugia malayi. Mol Biochem Parasitol. 2004;135(1):57-67.
Kozek WJ. What is new in the Wolbachia/Dirofi laria interaction? Vet Parasitol. 2005;133(2-3):127-32.
Slatko BE, Taylor MJ, Foster JM. The Wolbachia endosymbiont as an anti-fi larial nematode target. Symbiosis. 2010;51(1):55-65.
Taylor M, Mediannikov O, Raoult D, Greub G. Endosymbiotic bacteria associated with nematodes, ticks and amoebae. FEMS Immunol Med Microbiol. 2012; 64(1):21-31.
McNulty SN, Foster JM, Makendonka Mitreva M, Dunning Hotopp JC, Martin J, Fischer K, et al. Endosymbiont DNA in endobacteria-free fi larial nematodes indicates ancient horizontal genetic transfer. PLoS One. 2010; 5(6):e11029.
Turner JD, Langley RS, Johnston KL, Gentil K, Ford L, Wu B, et al. Wolbachia lipoprotein stimulates innate and adaptive immunity through Toll-like receptors 2 and 6 to induce disease manifestations of fi lariasis. J Biol Chem. 2009;284(33):22364-78.
Taylor MJ, Cross HF, Bilo K. Infl ammatory responses induced by the fi larial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria. J Exp Med. 2000;191(8):1429-36.
Saint André Av, Blackwell NM, Hall LR, Hoerauf A, Brattig NW, Volkmann L, et al. The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science. 2002;295(5561):1892-5.
Keiser PB, Reynolds SM, Awadzi K, Ottesen EA, Taylor MJ, Nutman TB. Bacterial endosymbionts of Onchocerca volvulus in the pathogenesis post-treatment reactions. J Infect Dis. 2002;185(6):805-11.
Brattig NW, Buttner DW, Hoerauf A. Neutrophil accumulation around Onchocerca worms and chemotaxis of neutrophils are dependent on Wolbachia endobacteria. Microbes Infect. 2001;3(6):439-46.
Kaifi JT, Diaconu E, Pearlman E. Distinct roles for PECAM-1, ICAM-1, and VCAM-1 in recruitment of neutrophils and eosinophils to the cornea in ocular onchocerciasis (river blindness). J Immunol. 2001;166 (11):6795-801.
Rao RU, Moussa H, Weil GJ. Brugia malayi: Effects of antibacterial agents on larval viability and development in vitro. Exp Parasitol. 2002;101(1):77-81.
Smith HL, Rajan TV. Tetracycline inhibits development of the infective-stage larvae of fi larial nematodes in vitro. Exp Parasitol. 2000;95(4):265-70.
Bandi C, McCall JW, Genchi C, Corona S, Venco L, Sacchi L. Effects of tetracycline on the fi larial worms Brugia pahangi and Dirofi laria immitis and their bacterial endosymbionts Wolbachia. Int J Parasitol. 1999; 29(2):357-64.
Hoerauf A, Mand S, Volkmann L, Buttner M, Marfo- Debrekyei Y, Taylor M, et al. Doxycycline in the treatment of human onchocerciasis: Kinetics of Wolbachia endobacteria reduction and of inhibition of embryogenesis in female Onchocerca worms. Microbes Infect. 2003;5(4):261-73. 659 March-Rosselló GA et al. Combatir con bacterias a las enfermedades infecciosas parasitarias Rev Med Inst Mex Seguro Soc. 2014;52(6):654-9
Hoerauf A, Volkmann L, Hamelmann C, Adjei O, Autenrieth IB, Fleischer B, et al. Endosymbiotic bacteria in worms as targets for a novel chemotherapy in fi lariasis. Lancet. 2000;355(9211):1242-3.
Hoerauf A, Volkmann L, Nissen-Paehle K, Schmetz C, Autenrieth I, Buttner DW, et al. Targeting of Wolbachia endobacteria in Litomosoides sigmodontis: comparison of tetracyclines with chloramphenicol, macrolides and ciprofl oxacin. Trop Med Int Health. 2000;5(4):275-9.
Taylor MJ, Makunde WH, McGarry HF, Turner JD, Mand S, Hoerauf A. Macrofi laricidal activity after doxycycline treatment of Wuchereria bancrofti: A doubleblind, randomised placebo-controlled trial. Lancet. 2005;365(9477):2116-21.
Turner JD, Mand S, Debrah AY, Muehlfeld J, Pfarr K, McGarry HF, et al. A randomized, double-blind clinical trial of a 3-week course of doxycycline plus albendazole and ivermectin for the treatment of Wuchereria bancrofti infection. Clin Infect Dis. 2006;42(8):1081-9.
Hoerauf A, Nissen-Pahle K, Schmetz C, Henkle- Duhrsen K, Blaxter ML, Buttner DW, et al. Tetracycline therapy targets intracellular bacteria in the fi larial nematode Litomosoides sigmodontis and results in fi larial infertility. J Clin Invest. 1999;103(1):11-8.
Jeyaprakash A, Hoy MA. Long PCR improves Wolbachia DNA amplifi cation: wsp sequences found in 76 % of sixty-three arthropod species. Insect Mol Biol. 2000;9(4):393-405.
Iturbe-Ormaetxe I, Walker T, O’ Neill SL. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 2011;12(6):508-18.
Jiggins FM, von Der Schulenburg JH, Hurst GD, Majerus ME. Recombination confounds interpretations of Wolbachia evolution. Proc Biol Sci. 2001;268 (1474):1423-7.
Werren JH, Baldo L, Clark ME. Wolbachia: Master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6(10):741-51.
Dobson SL, Marsland EJ, Rattanadechakul W. Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics. 2002;160(3): 1087-94.
Glaser RL, Meola MA. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS One. 2010;5(8):e11977.
Aleksandrov ID, Aleksandrova MV, Goriacheva, II, Roshchina NV, Shaikevich EV, Zakharov IA. [Removing endosymbiotic Wolbachia specifi cally decreases lifespan of females and competitiveness in a laboratory strain of Drosophila melanogaster]. Genetika. 2007;43(10):1372-8.
Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe- Ormaetxe I, McGraw EA, et al. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 2009;5(4):e1000368.
Kremer N, Voronin D, Charif D, Mavingui P, Mollereau B, Vavre F. Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog. 2009;5(10):e1000630.
Engelstädter J, Hurst GD. What use are male hosts? The dynamics of maternally inherited bacteria showing sexual transmission or male killing. Am Nat. 2009;173(5):E159-70.
Cordaux R, Bouchon D, Grève P. The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends Genet. 2011;27(8):332-41.
Crutcher JM, Hoffman SL. Malaria. En: Baron S, editor. Medical microbiology. Fourth edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996.
Kyle JL, Harris E. Global spread and persistence of dengue. Annu Rev Microbiol. 2008;62:71-92.
Saridaki A, Bourtzis K. Wolbachia: more than just a bug in insects genitals. Curr Opin Microbiol. 2010;13 (1):67-72.
Xi Z, Khoo CC, Dobson SL. Interspecifi c transfer of Wolbachia into the mosquito disease vector Aedes albopictus. Proc Biol Sci. 2006;273(1592):1317-22.
McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, et al. Stable introduction of a lifeshortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009;323(5910):141-4.
Calvitti M, Moretti R, Lampazzi E, Bellini R, Dobson SL. Characterization of a new Aedes albopictus (Diptera: Culicidae)-Wolbachia pipientis (Rickettsiales: Rickettsiaceae) symbiotic association generated by artifi cial transfer of the wPip strain from Culex pipiens (Diptera: Culicidae). J Med Entomol. 2010;47(2):179-87.
Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HC, Sinden RE, et al. Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog. 2010;6(10):e1001143.
Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog. 2011;7(5):e1002043.
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009;139(7):1268-78.
Kambris Z, Cook PE, Phuc HK, Sinkins SP. Immune activation by life-shortening Wolbachia and reduced fi larial competence in mosquitoes. Science. 2009;326 (5949):134-6.
Bian G, Xu Y, Lu P, Xie Y, Xi Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 2010;6(4):e1000833.
Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011;476(7361):450-3.
Riegler M, Sidhu M, Miller WJ, O’Neill SL. Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr Biol. 2005;15(15):1428-33.
Hoffmann AA, Montgomery BL, Popovici J, Iturbe- Ormaetxe I, Johnson PH, Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476 (7361):454-7.