2017, Número 3
<< Anterior Siguiente >>
Investigación en Discapacidad 2017; 6 (3)
Comparación de los sistemas MicroScan WalkAway y VITEK 2 Compact para la identificación y susceptibilidad de bacterias Gram-positivas y Gram-negativas de aislados clínicos
Hernández-Durán M, López-Jácome LE, Colín-Castro CA, Cerón-González G, Ortega-Peña S, Vanegas-Rodríguez ES, Mondragón-Eguiluz JA, Franco-Cendejas R
Idioma: Ingles.
Referencias bibliográficas: 33
Paginas: 105-114
Archivo PDF: 218.66 Kb.
RESUMEN
Introducción: La precisión y rapidez en la identificación bacteriana y la susceptibilidad antimicrobiana son esenciales en el manejo de los pacientes hospitalizados con enfermedades infecciosas.
Metodología: Este estudio compara la utilidad del sistema semi-automatizado VITEK 2
® Compact contra el sistema MicroScan WalkAway
® SI para la identificación bacteriana y la susceptibilidad antimicrobiana. Se incluyeron 54 cepas bacterianas aisladas de pacientes hospitalizados, 20 fueron cocos Gram-positivos, 34 bacilos Gram-negativos y 13 cepas de referencia.
Resultados: De estas cepas, el 89.5% fueron identificadas con éxito a nivel de especie por ambos sistemas. La concordancia en la susceptibilidad fue de 90.2% para Gram-negativos y 96.3% para bacterias Gram-positivas. El tiempo medio de demora en la obtención de los resultados de la prueba de susceptibilidad fue de 6.5 h para VITEK 2 y 12.5 h para MicroScan.
Conclusiones: Los sistemas de identificación son una herramienta necesaria en los laboratorios de microbiología. La identificación rápida y correcta de los aislamientos clínicos ayuda en el tratamiento antimicrobiano apropiado.
REFERENCIAS (EN ESTE ARTÍCULO)
Rhoads S, Marinelli L, Imperatrice CA, Nachamkin I. Comparison of MicroScan WalkAway system and Vitek system for identification of gram-negative bacteria. J Clin Microbiol. 1995; 33 (11): 3044-3046.
U.S. Food and Drug Administration. Guidance for industry and FDA. Class II special controls guidance document: antimicrobial susceptibility test (AST) systems. Silver Spring, MD: Center for Devices and Radiological Health, U.S. Food and Drug Administration; 2009. Disponible en: http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071462.pdf
Murray P. Manual of clinical microbiology. U.S.A.: American Society for Microbiology; 2007.
Dallas AL, Pekarek PM, Mills TJ, Neal WJ, Smallbrook AG, Hejna J. Comparison of BD Phoenix to Biomerieux Vitek for the identification and susceptibility testing of common bacterial isolates. 2005. Poster session presented at the 105th General Meeting of the American Society for Microbiolgy.
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement M100-S19. Wayne, PA: CLSI; 2011.
Winstanley T, Courvalin P. Expert systems in clinical microbiology. Clin Microbiol Rev. 2011; 24 (3): 515-556.
Juretschko S, Labombardi VJ, Lerner SA, Schreckenberger PC; Pseudomonas AST Study Group. Accuracies of beta-lactam susceptibility test results for Pseudomonas aeruginosa with four automated systems (BD Phoenix, MicroScan WalkAway, Vitek, and Vitek 2). J Clin Microbiol. 2007; 45 (4): 1339-1342.
Woodford N, Eastaway AT, Ford M, Leanord A, Keane C, Quayle RM et al. Comparison of BD Phoenix, Vitek 2, and MicroScan automated systems for detection and inference of mechanisms responsible for carbapenem resistance in Enterobacteriaceae. J Clin Microbiol. 2010; 48 (8): 2999-3002.
Jin WY, Jang SJ, Lee MJ, Park G, Kim MJ, Kook JK et al. Evaluation of VITEK 2, MicroScan, and Phoenix for identification of clinical isolates and reference strains. Diagn Microbiol Infect Dis. 2011; 70 (4): 442-447.
Hindler JA, Humphries RM. Colistin MIC variability by method for contemporary clinical isolates of multidrug-resistant Gram-negative bacilli. J Clin Microbiol. 2013; 51 (6): 1678-1684.
Wikler MA; Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: Nineteenth informational supplement. Wayne, PA.: Clinical and Laboratory Standards Institute; 2009.
Jossart MF, Courcol RJ. Evaluation of an automated system for identification of Enterobacteriaceae and nonfermenting bacilli. Eur J Clin Microbiol Infect Dis. 1999; 18 (12): 902-907.
Moore DF, Zhowandai MH, Ferguson DM, McGee C, Mott JB, Stewart JC. Comparison of 16S rRNA sequencing with conventional and commercial phenotypic techniques for identification of enterococci from the marine environment. J Appl Microbiol. 2006; 100 (6): 1272-1281.
Kim M, Heo SR, Choi SH, Kwon H, Park JS, Seong MW et al. Comparison of the MicroScan, VITEK 2, and Crystal GP with 16S rRNA sequencing and MicroSeq 500 v2.0 analysis for coagulase-negative Staphylococci. BMC Microbiol. 2008; 8: 233.
Eigner U, Schmid A, Wild U, Bertsch D, Fahr AM. Analysis of the comparative workflow and performance characteristics of the VITEK 2 and Phoenix systems. J Clin Microbiol. 2005; 43 (8): 3829-3834.
Odumeru JA, Steele M, Fruhner L, Larkin C, Jiang J, Mann E et al. Evaluation of accuracy and repeatability of identification of food-borne pathogens by automated bacterial identification systems. J Clin Microbiol. 1999; 37 (4): 944-949.
Mittman SA, Huard RC, Della-Latta P, Whittier S. Comparison of BD phoenix to vitek 2, microscan MICroSTREP, and Etest for antimicrobial susceptibility testing of Streptococcus pneumoniae. J Clin Microbiol. 2009; 47 (11): 3557-3561.
Donay JL, Mathieu D, Fernandes P, Prégermain C, Bruel P, Wargnier A et al. Evaluation of the automated phoenix system for potential routine use in the clinical microbiology laboratory. J Clin Microbiol. 2004; 42 (4): 1542-1546.
Doern GV, Brueggemann AB, Perla R, Daly J, Halkias D, Jones RN et al. Multicenter laboratory evaluation of the bioMérieux Vitek antimicrobial susceptibility testing system with 11 antimicrobial agents versus members of the family Enterobacteriaceae and Pseudomonas aeruginosa. J Clin Microbiol. 1997; 35 (8): 2115-2119.
Sader HS, Fritsche TR, Jones RN. Accuracy of three automated systems (MicroScan WalkAway, VITEK, and VITEK 2) for susceptibility testing of Pseudomonas aeruginosa against five broad-spectrum beta-lactam agents. J Clin Microbiol. 2006; 44 (3): 1101-1104.
Cornaglia G, Rossolini GM. The emerging threat of acquired carbapenemases in Gram-negative bacteria. Clin Microbiol Infect. 2010; 16 (2): 99-101.
Poirel L, Pitout JD, Nordmann P. Carbapenemases: molecular diversity and clinical consequences. Future Microbiol. 2007; 2 (5): 501-512.
Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007; 20 (3): 440-458, table of contents.
Carmeli Y, Akova M, Cornaglia G, Daikos GL, Garau J, Harbarth S et al. Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin Microbiol Infect. 2010; 16 (2): 102-111.
Miriagou V, Cornaglia G, Edelstein M, Galani I, Giske CG, Gniadkowski M et al. Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect. 2010; 16 (2): 112-122.
Tenover FC, Williams PP, Stocker S, Thompson A, Clark LA, Limbago B et al. Accuracy of six antimicrobial susceptibility methods for testing linezolid against staphylococci and enterococci. J Clin Microbiol. 2007; 45 (9): 2917-2922.
Felten A, Grandry B, Lagrange PH, Casin I. Evaluation of three techniques for detection of low-level methicillin-resistant Staphylococcus aureus (MRSA): a disk diffusion method with cefoxitin and moxalactam, the Vitek 2 system, and the MRSA-screen latex agglutination test. J Clin Microbiol. 2002; 40 (8): 2766-2771.
Ligozzi M, Bernini C, Bonora MG, De Fatima M, Zuliani J, Fontana R. Evaluation of the VITEK 2 system for identification and antimicrobial susceptibility testing of medically relevant gram-positive cocci. J Clin Microbiol. 2002; 40 (5): 1681-1686.
Nakasone I, Kinjo T, Yamane N, Kisanuki K, Shiohira CM. Laboratory-based evaluation of the colorimetric VITEK-2 Compact system for species identification and of the Advanced Expert System for detection of antimicrobial resistances: VITEK-2 Compact system identification and antimicrobial susceptibility testing. Diagn Microbiol Infect Dis. 2007; 58 (2): 191-198.
Swenson JM, Lonsway D, McAllister S, Thompson A, Jevitt L, Zhu W et al. Detection of mecA-mediated resistance using reference and commercial testing methods in a collection of Staphylococcus aureus expressing borderline oxacillin MICs. Diagn Microbiol Infect Dis. 2007; 58 (1): 33-39.
Hrabák J, Chudácková E, Walková R. Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev. 2013; 26 (1): 103-114.
Clerc O, Prod’hom G, Vogne C, Bizzini A, Calandra T, Greub G. Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with Gram-negative bacteremia: a prospective observational study. Clin Infect Dis. 2013; 56 (8): 1101-1107.
Kok J, Chen SC, Dwyer DE, Iredell JR. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory. Pathology. 2013; 45 (1): 4-17.