2009, Número 2
<< Anterior
Rev Mex Ing Biomed 2009; 30 (2)
Sistema de análisis de patrones implementado en FPGAs para el estudio experimental de los ligamentos en la articulación
Raygoza PJJ, Ortega CS, Bonsfills N, Núñez Á, Gómez BE
Idioma: Español
Referencias bibliográficas: 39
Paginas: 135-158
Archivo PDF: 857.21 Kb.
RESUMEN
La lesión del ligamento cruzado anterior (LCA) ha sido una de las patologías más estudiadas desde diferentes puntos de vista. Se ha experimentado con las variables, que de forma directa o indirecta, definen el concepto de inestabilidad producida por esta lesión. Debido a la dificultad que implica la realización de mediciones de la tensión y deformación de estas estructuras se han propuesto una amplia gama de metodologías de medición de este fenómeno. El interés por el estudio tensional de las estructuras articulares se debe a las posibilidades de obtener información sobre la estabilidad y la movilidad de articulaciones tanto sanas como lesionadas, con la posibilidad de intervenir sobre estos aspectos en su tratamiento y rehabilitación. Este artículo presenta la implementación de un sistema electrónico de monitorización de tensión-deformación de ligamentos de la articulación y de un sistema de reconocimiento de patrones. El sistema está compuesto de sensores strain gauge que detectan los cambios de tensión–deformación de los ligamentos durante los movimientos, los cuales son registrados formando patrones característicos que son clasificados por un circuito electrónico compuesto de un microprocesador con un arreglo de redes neuronales embebidas en un dispositivo reconfigurable FPGA.
REFERENCIAS (EN ESTE ARTÍCULO)
Herzog W, Hastler EM, Leonard TR. In situ calibration of the implantable force transducer. Journal Biomechanic 1996; 29(12): 1649-1652.
Gómez B, Núñez A, Ballesteros R, Martínez-Moreno E, Valls J, Munuera L. Neural and muscular electric activity in the cat´s knee. Acta Orthop Scand 1997; 68(2): 149-155.
Hinterwimmer S, Plitz W. Strain Measurement at the Knee Ligament Insertion Sites. Biomechanic tech (best) 2003; 48(1-2): 11-16.
Gardiner JC, Weiss JA. Subject-speciûc ûnite element analysis of the human medial collateral ligament during valgus knee loading. Journal of Orthopaedic Research 2003; 21: 1098–1106.
Flemming BC, Beynnon BD, Nichols CE, Renstrom PA. An in vivo comparation between intraoperative isometric measurement and local elogation of the graft afters reconstruction of the anterior cruciate ligament. The Journal of bone and Joint Surgery Incorporated, 1994; 76-A: 511-519.
Flemming BC, Beynnon BD, Nichols CE, Johnson RJ, Pope MH. An in vivo comparation of anterior tibial translation and strain in the anteromedial band of the anterior criciate ligament. Journal Biomechanics 1993; 26(1): 51-58.
Beynnon BD, Pope MH, Wertheimer CM, Johson RJ, Flemming BC, Nichols CE, Howe JG. The effect of funtional knee-braces on strain on the anterior cruciate ligament in vivo. The Journal of bone and Joint Surgery Incorporated 1992; 74-A(9): 1298-1312.
Shiro Takai, Savio L-Y, Wood, Glen AL, Douglas JA, Freddie HF. Determination of the in situ loads on the human anterior cruciate ligament. Journal of Orthopaedic Research, The Journal of Bone and Joint Surgery, 1993; 11: 686-695.
Beeynnon BD, Johson RJ, Flemming BC, Renstrom PA, Nichols CE. The measurement of elogation of anterior cruciate ligament grafs in vivo. The Journal of bone and Joint Surgery, Incorporated, 1994; 76-A: 520-531.
Flemming BC, Beynnon BD, Tohyama H, Johson RJ, Nichols CE, Renström P, Pope MH. Determination of a zero strain reference for the anteromedial band of the anterior cruciate ligament. Journal of Orthopaedic Research, The Journal of Bone and Joint Surgery, 1994; 12: 789-795.
Murray EM, Tim Leonard, Cyril BF, Nigel GS, Walter H. Longitudinal measurement of tibial motion relative to the femur during passive displacements in the cat before and anterior cruciate ligament transection. Journal of Orthopaedic Research, The Journal of Bone and Joint Surgery, 1998; 16: 448-454.
Bruce D, Beynnon BD, Braden CF. Anterior cruciate ligament strain in vivo. Journal Biomechanics 1998; 31(6): 519-525.
John AS, John MC, Joseph LG. A geometry theory of the equilibrium mechanics of fibers in the ligament and tedons. Journal Biomechanics 1991; 24(19): 943-949.
Yangming Xu, Hollerbach JM. A robust ensemble data method for indentification of human joint mechanical properties during movement. IEEE Transactions on Biomedical Engineering 1999; 46(4): 409-419.
Provenzano PP, Heisey D, Hayashi K, Lakes R, VanDerby JRR. Subfailure damage in ligament: a structural and cellular evaluation. Journal Appl Physiol 2002; 92: 362–371.
Weis J, Dale AS, Gardiner JC. Modeling contact in biological joints using penalty and augmented lagrangian methods. Proceedings ASME Advances in Bioengineering BED, 1996; 33: 337-348.
Bonsfills N, Raygoza JJ, Boemo E, Garrido J, Núñez A, Gómez-Barrena E. Proprioception in the ACL-ruptured Knee: The contribution of the medial collateral ligament and patellar ligament. An in vivo experimental study in the cat. Elsevier Journal The Knee, online www.sciencedirect.com, January 2007; 14(1): 39-45.
Beynnon BD, Johson RJ, Flemming BC. The science of anterior cruciate ligament rehabilitation. Clin Orthopaedic 2002; 402: 9-20.
Williamson MR, Dial KP, Biewener AA. Pectoralis muscle performance during ascending and slow level flight in mallards (Anas platyrhynchos). Journal Exp Biol 2001; 204: 495-507.
Andrew AB, William R. Corning. Dynamics of Mallard (Anas Platyrhynchos) Gastrocnemius Function during Swimming versus Terrestrial Locomotion. The Journal of Experimental Biology 2001; 204: 1745-1756.
TML Strain Gauges. Tokyo Sokki Kenkyujo Co. Ltd. Compañía especialista en sensores: URL: http://www.tokyosokki.co.jp/e/index.htm, 2004.
Bonsfills N, Gómez-Barrena E, Raygoza JJ, Núñez A. Loss of neuromuscular control related to motion in the acutely ACL-injured Knee: an experimental study. Eur Journal Apply Physiol, Springer Verlag, 2008; DOI: 10.1007/s0042-0080729-3.
Abramson D, Smith K, Logothetis P, Duke D. FPGA based implementation of a Hopfield Neural Network for Solving Constraint Satisfaction Problems. Proceedings of the IEEE, 1998: 688-693.
Hopfield JJ. Artificial neural networks. IEEE Circuits and Devices Magazine 1998: 3-10.
Ricky HT, Tam PKS, Cheung PWM. Hardware implementation of neural network based path planning algorithm by using the VHDL. Proceedings of the Institute of Electrical and Electronics Engineers. 1999: 310–314.
Suzuki D, Hammami O. SOM on Multi-FPGA ISA Board-Hardware Aspects. Proceedings of the Institute of Electrical and Electronics Engineers 1999: 1401–1405.
Chen YJ, Plessis WP. Neural network implementation on FPGA. IEEE Africon 2002: 1-9.
Anguita D, Boni A, Ridella S. A digital architecture for support vector machines: Theory, algoritm, and FPGA Implementation. IEEE Transations on Neural Networks, 2003; 14(5): 1-10.
Morteza SZ, Masoud S. Rectilinear floorplanning of FPGAs using khonen map. IEEE Proceedings, 2003: 1-10.
Kohonen T. Self-organizing map. Proceedings of the Institute of Electrical and Electronics Engineers, 1990; (78): 1464-1480.
Ritter H, Martinez T, Schulten K. Neural computation and self-organizing maps. Addison Wesley Published Company, 1992: 1-6.
Kohonen T. Generalizations of the self-organizing map. Proceedings of International Joint Conference on Neural Networks, 1993: 1-10.
Kohonen T. New Development and Applications of self-organizing maps. Proceedings of the Institute of Electrical and Electronics Engineers 1996: 164–171.
Raygoza-Panduro JJ, Ortega-Cisneros S, Boemo E, Gómez-Barrena E, Núñez A. FPGAs implementation of digital electronic circuit to pattern classification of knee instability. XVII National Conference and III International Conference on Informatics and Computing ISBN 970-36-0155-3, 2004; 1: 1-6.
The MathWorks. Neural network toolbox 4. User’s Guide The MathWorks, Inc. MatLab, www.mathworks.com, 2000.
Demuth H, Beale M. Neural network toolbox for use with MatLab, User’s Guide, Version 4, 2004.
Kohonen T. Generalizations of the self-organizing map. Proceedings of International Joint Conference on Neural Networks, 1993: 1-10.
Sutherland IE. Micropipelines, Communications of the ACM. 1989; 32(6): 720-738.
Boemo E, Ortega-Cisneros S. Sincronización Self-Timed: Protocolo de 2 fases. Proc. JCRA Universidad Autónoma de Madrid, Septiembre 2003; (1): 503-516.