2009, Número 2
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2009; 30 (2)
Segmentación adaptativa de lesiones isquémicas cerebrales a partir de imágenes de difusión de resonancia magnética
Hevia MN, Jiménez AJR, Medina BV, Yáñez SÓ, Rosso C, Samson Y, Baillet S
Idioma: Español
Referencias bibliográficas: 31
Paginas: 119-134
Archivo PDF: 453.41 Kb.
RESUMEN
La imagenología por resonancia magnética (IRM) se ha convertido en una de las modalidades de imágenes médicas más importantes para el diagnóstico, prevención y monitoreo de desórdenes neurológicos. En particular, la imagenología ponderada de difusión de RM (DWI, Diffusion-Weighted Image) es altamente sensible para lograr una detección temprana de los cambios isquémicos en la fase aguda de un infarto cerebral. En este trabajo se presenta la aplicación y comparación de un método de segmentación adaptativo desarrollado y validado previamente, utilizando una técnica de estimación no paramétrica que incluye anchos de banda o radios de intensidad variables, con el objetivo de cuantificar la región de la lesión isquémica cerebral causada por un infarto sólo a partir de la información contenida en las imágenes DWI. El método fue aplicado a imágenes reales, manteniendo el conjunto de parámetros constantes durante el proceso de segmentación para toda la base de datos. La comparación de la técnica de segmentación adaptativa, en relación con una técnica de estimación no paramétrica de radio fijo, demostró además de ser una técnica automática y robusta de segmentación de lesiones isquémicas cerebrales en fase aguda a partir de imágenes DWI, que la utilización del método adaptativo arroja mejores resultados debido a que fue sensible a volúmenes de infartos pequeños (‹ 1 cm
3). En comparación con la segmentación control de referencia de las lesiones cerebrales, las técnicas de segmentación evaluadas en este trabajo presentaron una correlación significativa para ambos métodos validados de radio fijo y radio variable (r = 0.8863 y r = 0.9693, respectivamente), observándose mejores resultados al utilizar el método adaptativo. Así mismo el índice de Tanimoto promedio obtenido fue superior para el caso del método de segmentación adaptativo que el de radio fijo, 0.729 y 0.638 respectivamente.
REFERENCIAS (EN ESTE ARTÍCULO)
Wells III WM, Grimson WEL, Kikinis R, Jolesz FA. Adaptive segmentation of MRI data. IEEE Transaction on Medical Imaging 1996; 15: 429-442.
González BMA, Zisserman A, Brady M. Segmentation and measurement of brain structures in MRI including confidence bounds. Medical Image Analysis 2000; 4: 189-200.
Van Everdingen KJ, van der Grond J, Kappelle LJ, Ramos MP, Mali WPTM. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke 1998; 29: 1783–1790.
Gas A, Hirsch JG, Behrens S. Exemplary studies on diffusion and perfusion weighted magnetic resonance imaging in acute neurological disease. Electromedica-68 2000; 2: 106–111.
Hevia-Montiel N, Jiménez-Alaniz JR, Medina-Bañuelos V, Yáñez-Suárez O, Rosso C, Samson Y, Baillet S. Robust nonparametric segmentation of infarct lesion from diffusion-weighted MR images. 29th IEEE EMBS Annual International Conference 2007: 2102–2104.
Hevia-Montiel N, Rosso C, Chupin M, Deltour S. Automatic prediction of infarct growth in acute ischemic stroke from MR apparent coefficient maps. International Journal Computer-Assisted Radiology and Surgery 2006; 1(57): 115–117.
Cosnard G, Duprez T, Grandin C. Imagerie de diffusion et de perfusion par résonance magétique de l’encèphale. Louvain Medical 1999; 118: 129–140.
Oppenheim C, Samson Y, Manaï R. Prediction of malignant middle cerebral artery infarction by diffusion - weighted imaging. Stroke 2000; 31: 2175–2181.
Shaefer PW, Ozsunar Y, He J. Assessing tissue viability with MR diffusion and perfusion imaging. American Journal of Neuroradiology 2003; 24: 436–446.
Han Y, Li E, Tian J, Chen J, Wang H, Dai J. The application of diffusion- and perfusion- weighted magnetic resonance imaging in the diagnosis and therapy of acute cerebral infarction. International Journal of Biomedical Imaging 2006: 1–11.
Bezdek JC, Hall LO, Clarke LP. Review of MR image segmentation techniques using pattern recognition. Medical Physics 1993; 20: 1033-1048.
Clarke LP, Velthuizen RP, Camacho MA, Heine JJ, Vaidyanathan M, Hall LO, Thatcher RW, Silbiger ML. MRI Segmentation: Methods and Applications. Magnetic Resonance Imaging 1995; 13: 343-368.
Shoroeter P, Vesin J, Langenberger T, Meulli R. Robust parameter estimation of intensity distribution for brain magnetic resonance images. IEEE Transaction on Medical Imaging 1998; 17: 172-186.
Georgescu B, Shimshoni I, Meer P. Mean shift based clustering in high dimensions: A texture classification example. International Conference Computer Vision 2003: 456-463.
Christoudias CM, Georgescu B, Meer P. Synergism in low level vision. 16th International Conference on Pattern Recognition 2002: 150-155.
Jiménez-Alaniz JR, Medina-Bañuelos V, Yáñez-Suárez O. Datadriven brain MRI segmentation supported on edge confidence and A priori tissue information. IEEE Transaction of Medical Imaging 2006; 25(1): 74–83.
Fukunaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transaction on Information Theory 1975; 21: 32-40.
Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. IEEE Conference on Computer Vision Pattern Recognition 2000; 2: 142-149.
Jiménez JR, Medina V, Yáñez O. Nonparametric density gradient estimation for segmentation of cerebral MRI. International Proccedings of the Second Joint EMBS/BMES Conference 2002: 1076–1077.
Jiménez-Alaniz JR, Pohl-Alfaro M, Medina-Bañuelos V, Yáñez-Suárez O. Segmenting Brain MRI using adaptive Mean Shift. 28th Annual International Conference Proceedings of the IEEE Engineering in Medicine and Biology Society 2006; 1: 3114-3117.
Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection. IEEE International Conference Computer Vision 2001; (1): 438-445.
Silverman BW. Density Estimation for Statistics and Data Analysis. Chapman and Hall/CRC - Monographs on Statistics and Applied Probability, 1986: (26).
Comaniciu D, Meer P. Mean shift analysis and applications. IEEE International Conference of Computer Vision 1999; 1197–1203.
Meer P, Georgescu B. Edge Detection with embedded confidence. IEEE transaction on pattern analysis and machine intelligent 2001; 23: 1351-1365.
Jiménez JR, Medina V, Yáñez O. Nonparametric MRI segmentation using mean shift and edge confidence maps. Progress in Biomedical Optics and Imaging 2003; 4(23): 1433-1441.
Hall P, Chung Hu T. Improved variable window kernel estimates of probability densities. The Annals of Statistics 1995; 23(1): 1-10.
Hevia-Montiel N, Rosso C, Chupin M, Deltour S, Bardinet E, Samson Y, Baillet S. Automatic prediction of infarct growth in acute ischemic stroke from MR apparent diffusion coefficient maps. Academic Radiology 2008; 15: 77-83.
Martel AL, Allder SJ, Delay GS, Morgan PS, Moody AR. (1999). Measurements of infarct volume in stroke patients using adaptive segmentation of diffusion weighted MR images. Proceedings of the Second International Conference on Medical Image Computing and Computer-Assisted Intervention 1678: 22–31.
Leemput KV, Maes F, Vandermeulen D, Suetens P. Automated model-based bias field correction of MR images of the brain. IEEE Transaction of Medical Imaging 1999; 18(10): 885–896.
Li W, Tian J, Li E, Dai J. Robust unsupervised segmentation of infarct lesion from diffusion tensor MR images using multiscale statistical classification and partial volume voxel reclassification. NeuroImage 2004; 23: 1507–1518.
Seghier ML, Ramlackhansingh A, Crinion J, Leff AP, Price C. Lesion identification using unified segmentation-normalization models and fuzzy clustering. NeuroImage 2008; (41): 1253-1266.