2021, Number 3
<< Back Next >>
salud publica mex 2021; 63 (3)
A decreasing trend in zinc deficiency in Mexican children aged 1-4: analysis of three national health and nutrition surveys in 1999, 2006 and 2018-19
De la Cruz-Góngora V, Shamah-Levy T, Villalpando S, Méndez-Gómez Humarán I, Rebollar-Campos R, Rivera-Dommarco J
Language: English
References: 46
Page: 371-381
PDF size: 309.56 Kb.
ABSTRACT
Objective. To describe trends in zinc deficiency (ZD)
prevalence among preschool-age Mexican children, and
explore differences in this trend among beneficiaries of the
conditional cash transfer program
Progresa/Oportunidades/
Prospera (CCT-POP).
Materials and methods. The serum
zinc information of children aged 1-4 who participated in the
ENN 1999, Ensanut 2006 and Ensanut 2018-19 was analyzed.
ZD was categorized according to IZiNCG cutoff values.
Logistic regression models were used to identify personal
participant characteristics associated with ZD trends, and
tests for interactions between survey CCT-POP beneficiaries
were applied.
Results. ZD decreased by 22.3 percentage
points (pp) between ENN 1999 and Ensanut 2018-19; among
CCT-POP beneficiaries, the decrease was 58.6 pp. Overweight
was associated with higher odds of ZD (OR=2.18,
p=0.023).
Conclusions. In the last 19 years, ZD declined significantly
among preschool-age Mexican children. Child beneficiaries
of the social program CCT-POP showed the largest reduction
of ZD.
REFERENCES
Blindauer CA. Advances in the molecular understanding of biological zinc transport. Chem Commun. 2015;51(22):4544-63. https://doi. org/10.1039/c4cc10174j
Krebs NF, Miller LV, Michael-Hambidge K. Zinc deficiency in infants and children: A review of its complex and synergistic interactions. Paediatr Int Child Health. 2014;34(4):279-88. https://doi.org/10.1179/204690551 4Y.0000000151
Fukunaka A, Fujitani Y. Role of zinc homeostasis in the pathogenesis of diabetes and obesity. Int J Mol Sci. 2018;19(2):476. https://doi.org/10.3390/ ijms19020476
Marger L, Schubert CR, Bertrand D. Zinc: An underappreciated modulatory factor of brain function. Biochem Pharmacol. 2014;91(4):426-35. https://doi.org/10.1016/j.bcp.2014.08.002
Wessells KR, Brown KH. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One. 2012;7(11):e50568. https://doi. org/10.1371/journal.pone.0050568
Villalpando S, García-Guerra A, Ramírez-Silva CI, Mejía-Rodríguez F, Matute G, Shamah-Levy T, Rivera JA. Iron, zinc and iodide status in Mexican children under 12 years and women 12-49 years of age. A probabilistic national survey. Salud Publica Mex. 2003;45(supl 4):S520-9. https://doi. org/10.1590/s0036-36342003001000008
Morales-Ruán MC, Villalpando S, García-Guerra A, Shamah-Levy T, Robledo-Pérez R, Ávila-Arcos MC, Rivera JA. Iron, zinc, copper and magnesium nutritional status in Mexican children aged 1 to 11 years. 2012;54(2):125-34.
Rivera JA, Sotres-Alvarez D, Habicht JP, Shamah T, Villalpando S. Impact of the Mexican Program for Education, Health, and Nutrition (Progresa) on Rates of Growth and Anemia in Infants and Young Children. JAMA. 2004;291(21):2563-70. https://doi.org/10.1001/jama.291.21.2563
Rivera JA, Shamah T, Villalpando S, Monterrubio E. Effectiveness of a large-scale iron-fortified milk distribution program on anemia and iron deficiency in low-income young children in Mexico. Am J Clin Nutr. 2010;91(2):431-9. https://doi.org/10.3945/ajcn.2009.28104
García-Guerra A, Neufeld LM, Bonvecchio-Arenas A, Fernández- Gaxiola AC, Mejía-Rodríguez F, García-Feregrino R, Rivera-Dommarco JA. Closing the nutrition impact gap using program impact pathway analyses to inform the need for program modifications in Mexico’s conditional cash transfer program. J Nutr. 2019;149(supl 1):2281-9. https://doi. org/10.1093/jn/nxz169
Consejo Nacional de Evaluación de la Política de Desarrollo Social. El Programa Progresa-Oportunidades-Prospera, a 20 años de su creación: México, Coneval, 2019 [cited September 28, 2020]. Available from: https:// www.coneval.org.mx/Evaluacion/IEPSM/Documents/Libro_POP_20.pdf
Romero-Martínez M, Shamah-Levy T, Vielma-Orozco E, Heredia- Hernández O, Mojica-Cuevas J, Cuevas-Nasu L, Rivera-Dommarco J. Encuesta Nacional de Salud y Nutrición (Ensanut 2018): metodología y perspectivas. Salud Publica Mex. 2019;61(6):917-23. https://doi. org/10.21149/11095
Smith JC, Butrimovitz GP, Purdy WC. Direct measurement of zinc in plasma by atomic absorption spectroscopy. Clin Chem. 1979;25(8):1487- 91. https://doi.org/10.1093/clinchem/25.8.1487
Bahramifar N, Yamini Y. On-line preconcentration of some rare earth elements in water samples using C18-cartridge modified with l-(2- pyridylazo) 2-naphtol (PAN) prior to simultaneous determination by inductively coupled plasma optical emission spectrometry (ICP-OES). Ann Chim Acta. 2005;540(2):325-32. https://doi.org/10.1016/j.aca.2005.03.058
Vyas S, Kumaranayake L. Constructing socio-economic status indices: How to use principal components analysis. Health Policy Plan. 2006;21(6):459-68. https://doi.org/10.1093/heapol/czl029
Lohman TG, Roche AF, Martorell R. Anthropometric Standarization Reference Manual. Champaign: Human Kinetics Books, 1988.
Habicht JP. Standardization of quantitative epidemiological methods in the field. Bol Oficina Sanit Panam. 1974;76(5):375-84 [cited August 16, 2016]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4277063
Members of the WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development. Geneva: WHO, 2007 [cited August 16, 2016]. Available from: https://www.who.int/publications/i/item/924154693X
World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva: WHO, 2011;1-6 [cited August 16, 2016]. Available from: https://apps.who.int/iris/bitstream/ handle/10665/85839/WHO_NMH_NHD_MNM_11.1_eng.pdf?ua=1
Cohen JH, Haas JD. Hemoglobin correction factors for estimating the prevalence of iron deficiency anemia in pregnant women residing at high altitudes in Bolivia. Rev Panam Salud Publica. 1999;6(6):392-9. https://doi. org/10.1590/S1020-49891999001100004
International Zinc Nutrition Consultative Group, Brown KH, Rivera JA, Bhutta Z, Gibson RS, King JC, et al. International Zinc Nutrition Consultative Group ( IZiNCG ) Technical Document #1. Assessment of the Risk of Zinc Deficiency in Populations and Options for Its Control. Food Nutr Bull. 2004;25(supl 2):99-203.
De la Cruz-Góngora V, Martínez-Tapia B, Cuevas-Nasu L, Rangel-Baltazar E, Medina-Zacarías MC, García-Guerra A, et al. Anemia, deficiencias de zinc y hierro, consumo de suplementos y morbilidad en niños mexicanos de 1 a 4 años: resultados de la Ensanut 100k. Salud Publica Mex. 2019;61(6):821-32. https://doi.org/10.21149/10557
Cediel G, Olivares M, Brito A, Cori H, López-de Romaña D. Zinc Deficiency in Latin America and the Caribbean. Food Nutr Bull. 2015;36(supl 2):S129-38. https://doi.org/10.1177/0379572115585781
Instituto Nacional de Salud. Malnutrición Oculta. Bogotá: INS, 2019 [cited September 30, 2020]. Available from: https://www.ins.gov.co/ Noticias/Paginas/INS-revela-qué-tan-bien-o-mal-nutridos-están-loscolombianos. aspx
Hennigar SR, Lieberman HR, Fulgoni VL, McClung JP. Serum zinc concentrations in the US population are related to sex, age, and time of blood draw but not dietary or supplemental zinc. J Nutr. 2018;148(8):1341-51. https://doi.org/10.1093/jn/nxy105
Barquera S, Rivera-Dommarco J, Gasca-García A. Políticas y programas de alimentación y nutrición en México. Salud Publica Mex. 2001;43:464-77. https://doi.org/10.1590/s0036-36342001000500011
Fischer-Walker CL, Black RE. Functional indicators for assessing zinc deficiency. Food Nutr Bull. 2007;28(supl 3):454-79. https://doi. org/10.1177/15648265070283s305
Shamah-Levy T, Vielma-Orozco E, Heredia-Hernández O, Romero-Martínez M, Mojica-Cuevas J, Cuevas-Nasu L, et al. Encuesta Nacional de Salud y Nutrición 2018. Resultados nacionales. Cuernavaca: INSP, 2020.
Terrin G, Canani RB, Di Chiara M, Pietravalle A, Aleandri V, Conte F, De Curtis M. Zinc in early life: A key element in the fetus and preterm neonate. Nutrients. 2015;7(12):10427-46. https://doi.org/10.3390/nu7125542
Krebs NF. Zinc Transfer to the Breastfed Infant. J Mammary Gland Biol Neoplasia. 1999;4(3):259-68. https://doi.org/10.1023/A:1018797829351
González-Castell LD, Unar-Munguía M, Quezada-Sánchez AD, Bonvecchio-Arenas A, Rivera-Dommarco J. Situación de las prácticas de lactancia materna y alimentación complementaria en México: resultados de la Ensanut 2018-19. Salud Publica Mex. 2020;62(6):704-13. https://doi. org/10.21149/11567
Sánchez-Pimienta TG, López-Olmedo N, Rodríguez-Ramírez S, García-Guerra A, Rivera JA, Carriquiry AL, Villalpando S. High prevalence of inadequate calcium and iron intakes by Mexican population groups as assessed by 24-hour recalls. J Nutr. 2016;146(9):1874S-80. https://doi. org/10.3945/jn.115.227074
Mazariegos M, Hambidge KM, Krebs N, Westcott JE, Lei S, Grunwald GK, et al. Zinc absorption in Guatemalan schoolchildren fed normal or low-phytate maize. Am J Clin Nutr. 2006;83(1):59-64. https://doi. org/10.1093/ajcn/83.1.59
Emdin SO, Dodson GG, Cutfield JM, Cutfield SM. Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic Bcell. Diabetologia. 1980;19(3):174-82. https://doi.org/10.1007/BF00275265
Houghton LA, Parnell WR, Thomson CD, Green TJ, Gibson RS. Serum zinc is a major predictor of anemia and mediates the effect of selenium on hemoglobin in school-aged children in a nationally representative survey in New Zealand. J Nutr. 2016;146(9):1670-6. https://doi.org/10.3945/ jn.116.235127
Gutiérrez L, Caballero N, Fernández-Calleja L, Karkoulia E, Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life. 2020;72(1):89-105. https://doi.org/10.1002/iub.2192
Marreiro DDN, Fisberg M, Cozzolino SMF. Zinc nutritional status in obese children and adolescents. Biol Trace Elem Res. 2002;86(2):107-22. https://doi.org/10.1385/BTER:86:2:107
Cavan KR, Gibson RS, Grazioso CF, Isalgue AM, Ruz M, Solomons NW. Growth and body composition of periurban Guatemalan children in relation to zinc status: A longitudinal zinc intervention trial. Am J Clin Nutr. 1993;57(3):344-52. https://doi.org/10.1093/ajcn/57.3.344
Gibson RS, Skeaff M, Williams S. Interrelationship of indices of body composition and status in 11-yr-old New Zealand children. Biol Trace Elem Res. 2000;75(1-3):65-77. https://doi.org/10.1385/ BTER:75:1-3:65
Weisstaub G, Hertrampf E, López-De Romaña D, Salazar G, Bugueño C, Castillo-Duran C. Plasma zinc concentration, body composition and physical activity in obese preschool children. Biol Trace Elem Res. 2007;118(2):167-74. https://doi.org/10.1007/s12011-007-0026-8
Tominaga K, Kagata T, Johmura Y, Hishida T, Nishizuka M, Imagawa M. SLC39A14, a LZT protein, is induced in adipogenesis and transports zinc. FEBS J. 2005;272(7):1590-9. https://doi.org/10.1111/j.1742- 4658.2005.04580.x
Maxel T, Smidt K, Larsen A, Bennetzen M, Cullberg K, Fjeldborg K, et al. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARy in human adipose tissue and 3T3-L1 pre-adipocytes. BMC Obes. 2015;2(46). https:// doi.org/10.1186/s40608-015-0076-y
García OP, Long KZ, Rosado JL. Impact of micronutrient deficiencies on obesity. Nutr Rev. 2009;67(10):559-72. https://doi.org/10.1111/j.1753- 4887.2009.00228.x
Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients. 2017;9(6):624. https://doi.org/10.3390/nu9060624
International Zinc Nutrition Consultative Group. Assessing population zinc status with serum zinc concentration. (2nd ed). California: IZiNCG, 2012;1-15.
Hotz C. The potential to improve zinc status through biofortification of staple food crops with zinc. Food Nutr Bull. 2009;30(supl 1):172-8. https://doi.org/10.1177/15648265090301s109