2019, Number 3
<< Back Next >>
Rev Odont Mex 2019; 23 (3)
Histological parameters of bone guided regeneration with FOULA hydroxyapatite in biou: Wistar rats
Pineda V, Olivares O, Yépez J, González A
Language: Spanish
References: 24
Page: 149-158
PDF size: 306.54 Kb.
ABSTRACT
Guided bone regeneration is a procedure to induce the regeneration of bone defects using biomaterials such as hydroxyapatite (HA), platelet concentrates, lyophilized bone, among others. In the Faculty of Dentistry at the University of the Andes (FOULA) in Venezuela, an HA-based biomaterial whose efficacy had not yet been evaluated in vivo was synthesized.
Objective: To determine the effectiveness of FOULAHA in guided bone regeneration of bone defects created in tibia bones of BIOU: Wistar rats.
Methodology: 33 male rats (BIOU: Wistar strain) were selected. A bone defect was created in both back tibias, the biomaterial being inserted only in the right tibia. Two experimental groups of 15 animals each were formed per type of HA (FOULA and coralline); in turn, these groups were divided into subgroups of 5 animals each according to study time (3, 6 and 9 weeks). The data were evaluated by histopathology.
Results: The levels reached were level III of RO (HA-FOULA) and level II (HA-Coral). At 6 and 9 weeks, the percentage of RO, using HA-Coral, increased to level IV. However, statistically no significant differences were observed between the groups.
Conclusion: FOULA HA was effective for BR in defects created in tibias of BIOU: Wistar rats.
REFERENCES
Suárez D. Principios básicos en regeneración ósea guiada. Acta Bioclínica. 2012; 2 (3): 89-116.
López M, Kitrilakis A, Carbone C. Desarrollo y evaluación in vivo de un biomaterial a base de sulfato de calcio para regeneración ósea. 2007; Disponible en: http://www.presi.unlp.edu.ar/secyt/cyt_htm/ebec07/pdf/lopezm.pdf.
Simion M, Fontana F, Rasperini G, Maiorana C. Vertical ridge augmentation by expanded-polytetrafluoroethylene membrane and combination of intraoral autogenousbone graft and deproteinized anorganic bovine bone (Bio Oss). Clin Oral Implants Res. 2007; 18 (5): 620-629.
Peral B, Redondo L, Verrier A, Serrat A, Torres M, Vaquero C. Estudio experimental sobre la regeneración ósea mandibular de la rata con diferentes biomateriales. Rev Esp Cir Oral y Maxilofac. 2008; 30 (5): 313-323.
Velazco G, González A, Ortiz R, Yépez J. Membranas tridimensionales de Hidroxiapatita y Quitosano como terapéutica en regeneración ósea guiada. Estudio de caso. Rev Venez Invest Odont IADR. 2014; 2 (1): 27-34.
Pilloni A, Pompa G, Saccucci M, Di Carlo G, Rimondini L, Brama M, Zeza B, Wannenes F, MiggliaccioS. Analysis of human alveolar osteoblast behavior on a nano-hydroxyapatyte susbstrate: an in vivo study. BMC Oral Health. 2014; 14 (22): 14-22.
Yépez J. Estudio comparativo de la regeneración ósea con tres tipos de hidroxiapatita: análisis ultra estructural en ratas Sprague Dawley. [Tesis de Maestría]. Facultad de Medicina, Universidad de Los Andes; 2014.
Liuyun J, Chengdong X. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J Biomed Sci. 2009; 16 (65): 1-10.
Gleeson J, Plunkett N, O’Brien F. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur Cell Mate. 2010; 4 (20): 218-230.
Díaz A, Fonseca M, Covo E. Injerto de tejido conectivo subpediculado con utilización de hidroxiapatita para aumento de reborde alveolar: reporte de un caso. Revista de la Facultad de Ciencias de la Salud. 2008; 5 (1): 48-55.
Castillo L. Efectividad del plasma rico en plaquetas sobre la regeneración ósea: estudio en animales de laboratorio. [Tesis de Maestría]. Mérida-Venezuela. Universidad de los Andes; 2009.
Harms C, Helms K, Taschner T, Stratos I, Ignatius A, Gerber T, Lenz S et al. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysic. Int J Nanomedicine. 2012; (7): 2883-2889.
Liao L, Yang S, Miron, Wei J, Zhang Y, Zhang M. Osteogenic Properties of PBLG-g-HA/PLLA Nanocomposites. PLoS One. 2014; 9 (9): e105876.
Yépez J, Ortiz R, Velazco G, González A. Resultados de la osteointegración con hidroxiapatita coralina tratada térmicamente: análisis ultraestructural en ratas Sprague Dawley. Acta Bioclínica. [Versión en línea] 2015. 5 (10): 125-139.
Martínez M, Pacheco A, Vargas M. Evaluación histológica de biocompatibilidad y bioconducción del compuesto hidroxiapatita-lignina implantado en tibia de conejos. Rev MVZ. 2009; 14 (1): 1624-1632.
Xiong Y, Ren C, Zhang B, Yang H, Lang Y, Min L, et al. Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects. Int J Nanomedicine. 2014; 9: 485-494. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894953/.
Domínguez A, Villaseñor C, Villegas F, León B, Piña C. Descripción histológica de la regeneración ósea en cresta iliaca de conejos implantados con Nukbone a las 4, 8, 12 y 16 semanas. Investigación Universitaria Multidisciplinaria. 2007; 6 (6): 88-95.
Nitin S, Alok K., Deepak G, Kainat K, Dhirendra S, Bhushan P, Vivek P, Naibedya C, Alok D, Jayesh R. PLoS One. 2013; 8 (10): e77578.
Jaramillo C, Rivera J, Echavarría A, O’Byrne J, Congote D, Restrepo L. Comparación de las propiedades de osteoconducción y osteointegración de una hidroxiapatita reabsorbible comercial con una hidroxiapatita reabsorbible sintetizada. Rev Colomb Cienc Pecu. 2009; 22 (2): 117-130.
Meseguer L, Alcaraz M, Vicente V, Clavel-Sainz M, Galian A. Respuesta ósea al implante del compuesto beta-fosfatotricálcico-colágeno (β-FTC-C). Estudio «in vivo» en conejos. Rev Esp Cir Osteoart. [Versión en línea] 1994; 29: 125-132.
Téllez J, Guerrero A, Torres B. Estudio de hidroxiapatita natural vs sintética en su aceptación biológica y eficacia regenerativa ósea en modelos animal. Oral. 2009; 32 (10): 533-536.
Quintana J, Gonzalez R, Quintana M. Resultados de 15 años empleando la Hidroxiapatita Coralina® HAP-200 como implante óseo en cirugía maxilofacial. Revista CENIC. Ciencias Químicas. 2010; 41: 1-9. Disponible en: http://www.redalyc.org/pdf/1816/181620500016.pdf.
Sagar N, Pandey AK, Gurbani D, Khan K, Singh D, Chaudhari BP, et al. In-vivo efficacy of compliant 3D nano-composite in critical-size bone defect repair: a six month preclinical study in rabbit. PloS One. 2013; 8 (10): e77578.
Oryan A, Parizi A, Sarvestani Z, Bigham A. Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank. 2012; 13 (4): 639-651.