2019, Número 3
<< Anterior Siguiente >>
Rev Odont Mex 2019; 23 (3)
Estimación de la cantidad de trióxido de bismuto como agente radiopacificador en dos cementos minerales trióxido agregado mediante una prueba de radiopacidad
Flores-Ledesma A, Gutiérrez-Estrada K, Bucio-Galindo L
Idioma: Español
Referencias bibliográficas: 70
Paginas: 139-148
Archivo PDF: 281.86 Kb.
RESUMEN
Se dice que el cemento mineral trióxido agregado (MTA) contiene 20%wt de trióxido de bismuto (Bi
2O
3) que le provee radiopacidad; sin embargo, la radiopacidad reportada en varias marcas de estos cementos ha sido variable, lo que sugiere que presentan diversa cantidad de bismuto, pudiendo afectar sus propiedades mecánicas.
Objetivo: Estimar la concentración de trióxido de bismuto en dos marcas comerciales disponibles en México a partir de una prueba de radiopacidad.
Material y métodos: cinco mezclas de cemento portland blanco (CPB) con concentraciones de Bi
2O
3 al 0, 10, 15, 20 y 25%wt (CPB, Bi10%, Bi15%, Bi20%, Bi25%), se analizaron dos lotes de dos cementos comerciales: MTA Angelus y MTA Viardent mediante una prueba de radiopacidad de acuerdo a la ISO 6876. Estos valores fueron determinados con base en la densidad radiográfica (tonos de grises) y convertidos a milímetros de aluminio (mm Al); se realizó un ajuste lineal con las mezclas del CPB y bismuto; se utilizó la ecuación de la recta para calcular la concentración de Bi
2O
3 en los cementos comerciales.
Resultados: Se observó aumento de radiopacidad a mayor cantidad de trióxido de bismuto, el CPB obtuvo una radiopacidad de 1.8 mm Al, mientas que en el Bi25% fue de 6 mm Al. La concentración de 20%wt se usó como control, se observaron diferencias estadísticamente significativas en Bi15%, Bi10%, cemento Portland blanco y MTA Angelus (p ‹ 0.05). En el MTA Viardent la cantidad de bismuto es de 24-25%wt, mientras que el MTA Angelus presenta entre 20-32%wt.
Conclusiones: Los cementos comerciales muestran una concentración de bismuto mayor que la sugerida, lo que aumenta la radiopacidad de éstos, pudiendo afectar las propiedades mecánicas.
REFERENCIAS (EN ESTE ARTÍCULO)
Torabinejad M, Hong C. Physical and chemical properties of a new root-end filling material. J Endod. 1995; 21 (7): 349-353.
Simon S, Rilliard F, Berdal A, Machtou P. The use of mineral trioxide aggregate in one-visit apexification treatment: a prospective study. Int Endod J. 2007; 40 (3): 186-197.
Felippe W, Felippe M, Rocha M. The effect of mineral trioxide aggregate on the apexification and periapical healing of teeth with incomplete root formation. Int Endod J. 2006; 39 (1): 2-9.
Li Z, Cao L, Fan M, Xu Q. Direct pulp capping with calcium hydroxide or mineral trioxide aggregate: a meta-analysis. J Endod. 2015; 41 (9): 1412-1417.
Tuna D, Olmez A. Clinical long-term evaluation of MTA as a direct pulp capping material in primary teeth. Int Endod J. 2008; 41 (4): 273-278.
Unal G, Maden M, Isidan T. Repair of furcal iatrogenic perforation with mineral trioxide aggregate: two years follow-up of two cases. Eur J Dent. 2010; 4 (4): 475-481.
Arens DE, Torabinejad M. Repair of furcal perforations with mineral trioxide aggregate. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 1996 Jul [cited 2015 Nov 19]; 82 (1): 84-88. Available from: http://www.sciencedirect.com/science/article/pii/S1079210496803829.
Shipper G, Grossman ES, Botha AJ, Cleaton-Jones PE. Marginal adaptation of mineral trioxide aggregate (MTA) compared with amalgam as a root-end filling material: a low-vacuum (LV) versus high-vacuum (HV) SEM study. Int Endod J. 2004; 37 (5): 325-336.
Lee H, Shin Y, Kim S-O, Lee H-S, Choi H-J, Song JS. Comparative Study of Pulpal Responses to Pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in Dogs’ Teeth. J Endod [Internet]. 2015 Aug [cited 2015 Nov 19]; 41 (8): 1317-1324. Available from: http://www.sciencedirect.com/science/article/pii/S0099239915003428.
De Rossi A, Silva LAB, Gatón-Hernández P, Sousa-Neto MD, Nelson-Filho P, Silva RAB et al. Comparison of pulpal responses to pulpotomy and pulp capping with biodentine and mineral trioxide aggregate in dogs. J Endod [Internet]. 2014; Sep [cited 2015 Oct 4]; 40 (9): 1362-1369. Available from: http://www.sciencedirect.com/science/article/pii/S0099239914001514.
Mitchell PJ, Pitt Ford T, Torabinejad M, McDonald F. Osteoblast biocompatibility of mineral trioxide aggregate. Biomaterials [Internet]. 1999; Jan [cited 2015 Nov 19]; 20 (2): 167-173. Available from: http://www.sciencedirect.com/science/article/pii/S0142961298001574.
Koh ET, McDonald F, Pitt Ford TR, Torabinejad M. Cellular response to mineral trioxide aggregate. J Endod. 1998; 24 (8): 543-547.
Maeda T, Suzuki A, Yuzawa S, Baba Y, Kimura Y, Kato Y. Mineral trioxide aggregate induces osteoblastogenesis via Atf6. Bone Reports [Internet]. 2015; Jun [cited 2015 Nov 19]; 2: 36-43. Available from: http://www.sciencedirect.com/science/article/pii/S2352187215000078.
Gandolfi MG, Ciapetti G, Taddei P, Perut F, Tinti A, Cardoso MV et al. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation. Dent Mater. 2010; 26 (10): 974-992.
Gandolfi MG, Taddei P, Tinti A, Prati C. Apatite-forming ability (bioactivity) of ProRoot MTA. Int Endod J. 2010; 43 (10): 917-929.
Gandolfi MG, Taddei P, Siboni F, Modena E, Marchetti C, Prati C. Apatite-type phases on MTA cements depend on soaking medium volume. Dent Mater [Internet]. 2011 Jan [cited 2015 Nov 19]; 27: e81-82. Available from: http://www.sciencedirect.com/science/article/pii/S010956411100813X.
Hakki SS, Bozkurt SB, Hakki EE, Belli S. Effects of mineral trioxide aggregate on cell survival, gene expression associated with mineralized tissues, and biomineralization of cementoblasts. J Endod. 2009; 35 (4): 513-519.
Zhou H, Shen Y, Wang Z, Li L, Zheng Y, Häkkinen L et al. In vitro cytotoxicity evaluation of a novel root repair material. J Endod. 2013; 39 (4): 478-483.
Dreger LAS, Felippe WT, Reyes-Carmona JF, Felippe GS, Bortoluzzi EA, Felippe MCS. Mineral trioxide aggregate and portland cement promote biomineralization in vivo. J Endod. 2012; 38 (3): 324-329.
Flores-Ledesma A, Barcelo SF, Bucio L, Arenas AJA. Elemental chemical composition and phase analysis by means of PIXE, DSC, TGA and XRD of MTA Angelus® and white Portland cement. Rev Odontológica Mex. 2016; 20 (3): 187-192.
Asgary S, Eghbal MJ, Parirokh M, Ghoddusi J, Kheirieh S, Brink F. Comparison of mineral trioxide aggregate’s composition with Portland cements and a new endodontic cement. J Endod. 2009; 35 (2): 243-250.
Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod. 2010; 36 (1): 16-27.
Belío-Reyes IA, Bucio L, Cruz-Chavez E. Phase composition of ProRoot mineral trioxide aggregate by X-ray powder diffraction. J Endod. 2009; 35 (6): 875-878.
Park J-W, Hong S-H, Kim J-H, Lee S-J, Shin S-J. X-Ray diffraction analysis of white ProRoot MTA and Diadent BioAggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod [Internet]. 2010; Jan [cited 2015 Nov 21]; 109 (1): 155-1558. Available from: http://www.sciencedirect.com/science/article/pii/S1079210409006593.
Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod [Internet]. 1995; Jul [cited 2015 Nov 2]; 21 (7): 349-353. Available from: http://www.sciencedirect.com/science/article/pii/S0099239906809672.
Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod [Internet]. 2006; Jun [cited 2015 Nov 21]; 32 (6): 569-572. Available from: http://www.sciencedirect.com/science/article/pii/S0099239905000269.
Lee BN, Hwang YC, Jang JH, Chang HS, Hwang IN, Yang SY et al. Improvement of the properties of mineral trioxide aggregate by mixing with hydration accelerators. J Endod [Internet]. 2011; 37 (10): 1433-1436. Available from: http://dx.doi.org/10.1016/j.joen.2011.06.013.
Huang T-H, Shie M-Y, Kao C-T, Ding S-J. The effect of setting accelerator on properties of mineral trioxide aggregate. J Endod [Internet]. 2008; 34 (5): 590-593. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18436041.
Flores-Ledesma A, Barceló Santana F, Bucio L, Arenas-Alatorre JA, Faraji M, Wintergerst AM. Bioactive materials improve some physical properties of a MTA-like cement. Mater Sci Eng C. 2017; 71: 150-155.
Coomaraswamy KS, Lumley PJ, Hofmann MP. Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system. J Endod. 2007; 33 (3): 295-298.
Viapiana R, Guerreiro-Tanomaru JM, Hungaro-Duarte MA, Tanomaru-Filho M, Camilleri J. Chemical characterization and bioactivity of epoxy resin and Portland cement-based sealers with niobium and zirconium oxide radiopacifiers. Dental Materials. 2014; 30 (9): 1005-1020.
Grazziotin-Soares R, Nekoofar MH, Davies TE, Bafail A, Alhaddar E, Hübler R et al. Effect of bismuth oxide on white mineral trioxide aggregate: chemical characterization and physical properties. Int Endod J. 2014; 47 (6): 520-533.
Cutajar A, Mallia B, Abela S, Camilleri J. Replacement of radiopacifier in mineral trioxide aggregate; characterization and determination of physical properties. Dent Mater. 2011; 27 (9): 879-891.
Islam I, Kheng Chng H, Jin Yap AU. Comparison of the physical and mechanical properties of MTA and portland cement. J Endod. 2006; 32 (3): 193-197.
Camilleri J. Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J Endod. 2014; 40 (3): 436-440.
Bortoluzzi EA, Araújo GS, Guerreiro Tanomaru JM, Tanomaru-Filho M. Marginal gingiva discoloration by gray MTA: a case report. J Endod. 2007; 33 (3): 325-327.
Belobrov I, Parashos P. Treatment of tooth discoloration after the use of white mineral trioxide aggregate. J Endod. 2011; 37 (7): 1017-1020.
Felman D, Parashos P. Coronal tooth discoloration and white mineral trioxide aggregate. J Endod. 2013; 39 (4): 484-487.
Jang J-H, Kang M, Ahn S, Kim S, Kim W, Kim Y et al. Tooth discoloration after the use of new pozzolan cement (Endocem) and mineral trioxide aggregate and the effects of internal bleaching. J Endod. [Internet]. 2013; 39 (12): 1598-1602. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24238455.
Marciano MA, Costa RM, Camilleri J, Mondelli RFL, Guimarães BM, Duarte MAH. Assessment of color stability of white mineral trioxide aggregate angelus and bismuth oxide in contact with tooth structure. J Endod. 2014; 40 (8): 1235-1240.
Camilleri J. Staining Potential of Neo MTA Plus, MTA Plus, and biodentine used for pulpotomy procedures. J Endod [Internet]. 2015. Jul [cited 2015 Nov 8]; 41 (7): 1139-1145. Available from: http://www.sciencedirect.com/science/article/pii/S0099239915002101.
Kang S-H, Shin Y-S, Lee H-S, Kim S-O, Shin Y, Jung I-Y et al. Color changes of teeth after treatment with various mineral trioxide aggregate-based materials: an ex vivo study. J Endod. 2015; 41 (5): 737-741.
Islam I, Chng HK, Yap AUJ. Comparison of the root-end sealing ability of MTA and Portland cement. Aust Endod J. 2005; 31 (2): 59-62.
Moreno-Vargas YA, Luna-Arias JP, Flores-Flores JO. Hydration reactions and physicochemical properties in a novel tricalcium-dicalcium silicate-based cement containing hydroxyapatite nanoparticles and calcite: a comparative study. Ceram Int. 2017; 43: 13290-13298.
ISO. Specification for dental root canal sealing materials. ISO 6876. London; 2011.
Shojaee N, Adl A, Jafarpur D, Sobhnamayan F. Effect of different water-to-powder ratios on the compressive strength of calcium-enriched mixture. Iran Endod J. 2018; 13 (3): 395-397.
Fridland M, Rosado R. MTA solubility: long tern study. J Endod. 2005; 31: 376-379.
Vivan RR, Ordinola-Zapata R, Bramante CM, Bernardineli N, Garcia RB, Hungaro Duarte MA et al. Evaluation of the radiopacity of some commercial and experimental root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 108 (6): e35-8.
Torabinejad M, White DJ. Tooth filling material and method of use. Washington, DC: United States Patent & Trademark Office; Patent Number 5,769,638, May 16, 1995.
Húngaro Duarte MA, de Oliveira El Kadre GD, Vivan RR, Guerreiro Tanomaru JM, Filho MT, de Moraes IG. Radiopacity of portland cement associated with different radiopacifying agents. J Endod. 2009; 35 (5): 737-740.
Sureshchandra B, Gopikrishna V. Grossman’s endodontic practice. 13th Edition. Ser, editor. India: Wolter Kluwer Health; 2014. p. 343.
Ørstavik D. Materials used for root canal obturation: technical, biological and clinical testing. Endod Top. [Internet]. 2005; 12 (1): 25-38. Available from: http://doi.wiley.com/10.1111/j.1601-1546.2005.00197.x.
Torabinejad M, Hong C. Physical and chemical properties of a new root-end filling material. J Endod. 1995; 27 (1): 349-353.
Hwang YC, Lee SH, Hwang IN, Kang IC, Kim MS, Kim SH et al. Chemical composition, radiopacity, and biocompatibility of Portland cement with bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 107 (3): e96-102.
Saghiri MA, Gutmann JL, Orangi J, Asatourian A, Sheibani N. Radiopacifier particle size impacts the physical properties of tricalcium silicate-based cements. J Endod [Internet]. 2015; Feb [cited 2015 Nov 21]; 41 (2): 225-230. Available from: http://www.sciencedirect.com/science/article/pii/S0099239914009303.
Formosa LM, Mallia B, Bull T, Camilleri J. The microstructure and surface morphology of radiopaque tricalcium silicate cement exposed to different curing conditions. Dent Mater [Internet]. 2012 May [cited 2015 Nov 19]; 28 (5): 584-595. Available from: http://www.sciencedirect.com/science/article/pii/S0109564112000504.
Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod. 2003; 29 (12): 814-817.
Bueno CE d S, Zeferino EG, Manhaes JLRC, Rocha DGP, Cunha RS, De Martin AS. Study of the bismuth oxide concentration required to provide Portland cement with adequate radiopacity for endodontic use. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 2009; 107 (1): e65-59. Available from: http://dx.doi.org/10.1016/j.tripleo.2008.09.016.
Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J. 2007; 40 (6): 462-470.
Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater [Internet]. 2013; May [cited 2015 Nov 19]; 29 (5): 580-593. Available from: http://www.sciencedirect.com/science/article/pii/S0109564113000559.
Coleman NJ, Nicholson JW, Awosanya K. A preliminary investigation of the in vitro bioactivity of white Portland cement. Cem Concr Res. 2007; 37 (11): 1518-1523.
Abd Rashid R, Shamsudin R, Abdul Hamid MA, Jalar A. In-vitro bioactivity of wollastonite materials derived from limestone and silica sand. Ceram Int. 2014; 40 (5): 6847-6853.
Cárdenas-Bahena Á, Sánchez-García S, Tinajero-Morales IIC, González-Rodríguez VM, Baires-Várguez L. Hipoclorito de sodio en irrigación de conductos radiculares: sondeo de opinión y concentración en productos comerciales. [Use of sodium hypochlorite in root canal irrigation. Opinion survey and concentration in commercial products]. Rev Odontológica Mex. 2012; 16 (4): 252-258.
Del Castillo G, Perea B, Labajo E, Santiago A, Garcia F. Lesiones por hipoclorito sódico en la clínica odontológica: causas y recomendaciones de actuación. Científica Dent. 2011; 8 (1): 71-79.
Siqueira JF, Rqas N, Favieri A. Chemomechanical reduction of the bacterial and irrigation with 1%, 2.5%, and 5.25% sodium population in the root canal after instrumentation hypochlorite. J Endod. 2000; 26 (6): 331-334.
Beatty H, Svec T. Quantifying coronal tooth discoloration caused by biodentine and endosequence root repair material. J Endod. 2015; 41 (12): 2036-2039.
Bortoluzzi EA, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Duarte MAH. Radiographic effect of different radiopacifiers on a potential retrograde filling material. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 2009; 108 (4): 628-632. Available from: http://dx.doi.org/10.1016/j.tripleo.2009.04.044.
Vega-Jiménez AL, Almaguer-Flores A, Flores-Castaneda M, Camps E, Uribe-Ramirez M, Aztatzi-Aguilar OG et al. Bismuth subsalicylate nanoparticles with anaerobic antibacterial activity for dental applications. Nanotechnology. 2017; 28 (43): 1-12.
Campos V, Almaguer-Flores A, Velasco-Aria D, Díaz D, Rodil SE. Bismuth and silver nanoparticles as antimicrobial agent over subgingival bacterial and nosocomial strains. J Mater Sci Eng A. 2018; 8 (7-8): 142-146.
Hernandez-Delgadillo R, Del Angel-Mosqueda C, Solís-Soto JM, Munguia-Moreno S, Pineda-Aguilar N, Sánchez-Nájera RI et al. Antimicrobial and antibiofilm activities of MTA supplemented with bismuth lipophilic nanoparticles. Dent Mater J [Internet]. 2017; 36 (4): 503-510. Available from: https://www.jstage.jst.go.jp/article/dmj/36/4/36_2016-259/_article.