2019, Number 2
<< Back Next >>
Rev Cubana Med Trop 2019; 71 (2)
Cloning and expression in Escherichia coli of the full-length and deletion variants of a human papillomavirus 18 L1 gene isolated from a Cuban patient
Pimienta E, Rodríguez S, Fando R, Serrano Y, Ortega D, Palenzuela A, Marrero K
Language: English
References: 55
Page: 1-25
PDF size: 589.26 Kb.
ABSTRACT
Introduction: Human papillomavirus (HPV) vaccines are based on the L1 major capsid protein.
Objectives: To clone the HPV-18 L1 gene from a Cuban female HPV-18-infected patient and to express the full-length and deletion variants of the cloned HPV-18 L1 gene in Escherichia coli.
Methods: The full-length HPV-18 L1 gene was PCR-amplified from total DNA isolated from a Cuban patient, cloned and finally subcloned into the E. coli expression vector pET26b. Three deletion mutants were constructed, which encode truncated proteins lacking 30 amino acids at the C-terminus in combination with 5, 6 or none deleted residue at the N-terminus. Production of L1 proteins in E. coli BL21(DE3) and E. coli SHuffle T7 was assessed by SDS-PAGE and Western blotting.
Results: The cloned HPV-18 L1 gene was 99.9 % similar to the African variant EF202152 and probably shares a common origin with the B lineage of genotype 18. The three truncated variants of HPV-18 L1 were produced at higher levels than the full-length HPV-18 L1 protein, attaining higher levels in E. coli BL21(DE3) and higher solubility in E. coli SHuffle. The C-terminus-only truncated variant, L1ΔC30, was produced at similar levels to the HPV-18 L1s truncated at both termini. E. coli SHuffle produced about three times more amounts of L1ΔC30 when grown under autoinduction conditions with respect to conventional induction and thus, amounts were comparable to those obtained in E. coli BL21(DE3) under conventional induction.
Conclusions: Truncation of thirty amino acid residues at the carboxy-terminus of the HPV-18 L1 made a major contribution to the production and solubility of this wild-type protein in E. coli. This is the first report about soluble production of HPV-18 L1 protein in an E. coli SHuffle strain. However, higher amounts of L1 are needed to scale-up its production for developing an HPV vaccine candidate.
REFERENCES
Munoz N, Castellsagué X, de González AB, Gissmann L. HPV in the etiology of human cancer. Vaccine. 2006;24:S1-S10.
Baker T, Newcomb W, Olson N, Cowsert L, Olson C, Brown J. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J. 1991;60(6):1445-56.
Hagensee ME, Yaegashi N, Galloway DA. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J. Virol. 1993;67(1):315-22.
Kirnbauer R, Booy F, Cheng N, Lowy D, Schiller J. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA. 1992;89(24):12180-4.
Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell. 2000;5(3):557-67.
Kirnbauer R, Taub J, Greenstone H, Roden R, Dürst M, Gissmann L, et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol. 1993;67(12):6929-36.
Lowy DR. HPV vaccination to prevent cervical cancer and other HPV-associated disease: from basic science to effective interventions. J Clin Invest. 2016 Jan;126(1):5-11. doi: 10.1172/JCI85446.
Bruni L, Barrionuevo-Rosas L, Serrano B, Mena M, Gómez D, Muñoz J, et al; ICO Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases. Summary Report May 19, 2017.
Pirog EC, Lloveras B, Molijn A, Tous S, Guimerà N, Alejo M, et al. HPV prevalence and genotypes in different histological subtypes of cervical adenocarcinoma, a worldwide analysis of 760 cases. Mod Pathol. 2014;27(12):1559-67.
Kim J-Y, Nam BH, Lee J-A. Is human papillomavirus genotype an influencing factor on radiotherapy outcome? Ambiguity caused by an association of HPV 18 genotype and adenocarcinoma histology. J Gynecol Oncol. 2011;22(1):32-8.
Sapp M, Fligge C, Petzak I, Harris JR, Streeck RE. Papillomavirus assembly requires trimerization of the major capsid protein by disulfides between two highly conserved cysteines. J. Virol. 1998;72(7):6186-9.
Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res. 2015 Feb;15(1):1-16.
Gu Y, Wei M, Wang D, Li Z, Xie M, Pan H, et al. Characterization of an Escherichia coli-derived human papillomavirus type 16 and 18 bivalent vaccine. Vaccine. 2017;35:4637-45.
Bishop B, Dasgupta J, Klein M, Garcea RL, Christensen ND, Zhao R, et al. Crystal structures of four types of human papillomavirus L1 capsid proteins: understanding the specificity of neutralizing monoclonal antibodies. J Biol Chem. 2007;282(43):31803-11.
Chen XS, Casini G, Harrison SC, Garcea RL. Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L1. J Mol Biol. 2001;307(1):173-82.
Bang HB, Lee YH, Lee YJ, Jeong KJ. High-level production of human papillomavirus (HPV) type 16 L1 in Escherichia coli. J Microbiol Biotechnol. 2016;26(2):356-63.
Hanslip SJ, Zaccai NR, Middelberg AP, Falconer RJ. Assembly of Human Papillomavirus Type‑16 Virus‑Like Particles: Multifactorial Study of Assembly and Competing Aggregation. Biotechnol Prog. 2006;22(2):554-60.
Ishii Y, Tanaka K, Kanda T. Mutational analysis of human papillomavirus type 16 major capsid protein L1: the cysteines affecting the intermolecular bonding and structure of L1-capsids. Virology. 2003;308(1):128-36.
Webb E, Cox J, Edwards S. Cervical cancer-causing human papillomaviruses have an alternative initiation site for the L1 protein. Virus genes. 2005;30(1):31-5.
Seo P, Heo S, Han E, Seo J, Ghim S, Kim Ch. Bacterial Expression and Purification of Human Papillomavirus Type 18 L1. Biotechnol. Bioprocess Eng. 2009;14:168-74.
Schadlich L, Senger T, Gerlach B, Mucke N, Klein C, Bravo IG, et al. Analysis of modified human papillomavirus type 16 L1 capsomeres: the ability to assemble into larger particles correlates with higher immunogenicity. J Virol. 2009;83(15):7690-705.
Deschuyteneer M, Elouahabi A, Plainchamp D, Plisnier M, Soete D, Corazza Y, et al. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix, the AS04-adjuvanted HPV-16 and -18 cervical cancer vaccine. Hum Vaccin. 2010;6(5):407-19.
Soto Y, Torres G, Kouri V, Limia CM, Goicolea A, Capo V, et al. Molecular epidemiology of human papillomavirus infections in cervical samples from Cuban women older than 30 years. J Low Genit Tract Dis. 2014;18(3):210-7.
Soto Y, Mune M, Morales E, Goicolea A, Mora J, Sanchez L, et al. Human papillomavirus infections in Cuban women with cervical intraepithelial neoplasia. Sex Transm Dis. 2007;34(12):974-6.
Ríos Hernández MA, Hernández Menéndez M, Aguilar Vela de Oro FO, Silveira Pablos M, Amigó de Quesada M, Aguilar Fabré K. Tipos de papilomavirus humanos más frecuentes en muestras cubanas de cáncer cervical. Rev Cubana Obstet Ginecol. 2010;36(2):104-11.
Piña Napal JC, Crespo Campos G, Fando Calzado R, Casanova Corona G, Curbelo Toledo M, Guerra Rodríguez MM. Identificación molecular de genotipos papilomavirus humanos en pacientes con cáncer de cuello uterino. Rev Arch Med Camagüey. 2016;20(3):288-98.
Soto Y, León CML, Cardellá VK, Maiza AG, de Paz VC, Jiménez MM. Papilomavirus humanos y otros factores asociados al desarrollo de lesiones cervicouterinas en mujeres cubanas. Panorama Cuba y Salud. 2016;11(1):24-33.
Soto Y, Limia CM, González L, Grá B, Hano OM, Martínez PA, et al. Molecular evidence of high-risk human papillomavirus infection in colorectal tumours from Cuban patients. Mem Inst Oswaldo Cruz. 2016;111(12):731-6.
Limia CM, Soto Y, García Y, Blanco O, Kourí V, López MV, et al. Human papillomavirus infection in anal intraepithelial lesions from HIV infected Cuban men. Infect Agent Cancer. 2017;12(1):5.
Ortega D, Palenzuela A, Tamayo L, Pascual M, Santana A, López M, et al. Prevalencia y distribución de genotipos de alto riesgo del virus del papiloma humano en una población de mujeres en La Habana. 8vo. Congreso Cubano de Microbiología y Parasitología en Cuba. La Habana, 14-16 de Octobre, 2014.
Chen Z, Schiffman M, Herrero R, DeSalle R, Anastos K, Segondy M, et al. Evolution and taxonomic classification of alphapapillomavirus 7 complete genomes: HPV18, HPV39, HPV45, HPV59, HPV68 and HPV70. PloS One. 2013;8(8):e72565.
Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009;27(10):946-50.
Seo SW, Yang J-S, Kim I, Yang J, Min BE, Kim S, et al. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency Metab Eng. 2013;15:67-74.
Pimienta E, Aldama G, Serrano Y, Rodríguez S, Otero A, Fando R, et al. Expresión del gen L1 del Virus del Papiloma Humano tipo 18, aislado de una biopsia de una paciente cubana, en cepas de Escherichia coli. Rev CENIC Ciencias Biológicas. 2018;49(3).
Studier FW. Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif. 2005;41(1):207-34.
Diederichs S, Korona A, Staaden A, Kroutil W, Honda K, Ohtake H, et al. Phenotyping the quality of complex medium components by simple online-monitored shake flask experiments. Microb Cell Fact. 2014;13(1):149.
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680.
Sambrook J, Fritsch E, Maniatis T. Molecular Cloning: a Laboratory Manual. 2nd ed. New York, EE UU: Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1989.
Lazar I, Lazar I. Gel Analyzer 2010a: Freeware 1D gel electrophoresis image analysis software. 2010 [cited 2017 Aug 20]. Available from: http://www.gelanalyzer.com/
Kelsall S, Kulski J. Expression of the major capsid protein of human papillomavirus type 16 in Escherichia coli J Virol Methods. 1995;53(1):75-90.
Doorbar J, Gallimore PH. Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus 1a. J. Virol. 1987;61(9):2793-9.
Faust G, Stand A, Weuster‑Botz D. IPTG can replace lactose in auto‑induction media to enhance protein expression in batch‑cultured Escherichia coli. Eng Life Sci. 2015;15(8):824-9.
Huang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines. 2017;2(1):3.
Muller M, Zhou J, Reed TD, Rittmuller C, Burger A, Gabelsberger J, et al. Chimeric papillomavirus-like particles. Virology. 1997;234(1):93-111.
Akuzum B, Kim S, Nguyen TT, Hong J, Lee S, Kim E, et al. L1 Recombinant Proteins of HPV Tested for Antibody Forming Using Sera of HPV Quadrivalent Vaccine. Immune Netw. 2018;18(3).
Mori S, Ozaki S, Yasugi T, Yoshikawa H, Taketani Y, Kanda T. Inhibitory cis-element-mediated decay of human papillomavirus type 16 L1-transcript in undifferentiated cells. Mol Cell Biochem. 2006;288(1-2):47-57.
Collier B, Oberg D, Zhao X, Schwartz S. Specific inactivation of inhibitory sequences in the 5' end of the human papillomavirus type 16 L1 open reading frame results in production of high levels of L1 protein in human epithelial cells. J Virol. 2002;76(6):2739-52.
Berg M, Di Fatta J, Hoiczyk E, Schlegel R, Ketner G. Viable adenovirus vaccine prototypes: high-level production of a papillomavirus capsid antigen from the major late transcriptional unit. Proc Natl Acad Sci USA. 2005;102(12):5.
Gustafsson C, Minshull J, Govindarajan S, Ness J, Villalobos A, Welch M. Engineering genes for predictable protein expression. Protein Expr Purif. 2012;83(1):37-46.
Allert M, Cox JC, Hellinga HW. Multifactorial determinants of protein expression in prokaryotic open reading frames. J Mol Biol. 2010;402(5):905-18.
Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, et al. Synonymous codons direct cotranslational folding toward different protein conformations. Mol Cell. 2016;61(3):341-51.
Wei M, Wang D, Li Z, Song S, Kong X, Mo X, et al. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro. Emerg Microbes Infect. 2018;7(1):160.
Wurm DJ, Quehenberger J, Mildner J, Eggenreich B, Slouka C, Schwaighofer A, et al. Teaching an old pET new tricks: tuning of inclusion body formation and properties by a mixed feed system in E. coli. Appl Microbiol Biotechnol. 2018;102(2):667-76.
Samuelson JC, Causey TB, Berkmen M. Disulfide-bonded protein production in E. coli. Genet Eng Biotechnol News. 2012;32(3).
Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact. 2012;11(1):753.