2019, Número 2
<< Anterior Siguiente >>
Rev Cubana Med Trop 2019; 71 (2)
Clonación y expresión en Escherichia coli de un gen L1 completo del virus del papiloma humano 18 aislado de una paciente cubana y variantes delecionadas
Pimienta E, Rodríguez S, Fando R, Serrano Y, Ortega D, Palenzuela A, Marrero K
Idioma: Ingles.
Referencias bibliográficas: 55
Paginas: 1-25
Archivo PDF: 589.26 Kb.
RESUMEN
Introducción: Las vacunas contra el virus del papiloma humano (VPH) se fundamentan en la proteína principal de la cápsida L1.
Objetivo: Clonar el gen L1 del VPH-18 a partir de una paciente cubana infectada con VPH-18 y expresar las variantes de longitud completa y delecionadas del gen L1 del VPH-18 en Escherichia coli.
Métodos: El gen L1 del VPH-18 de longitud completa se amplificó por PCR a partir de ADN total aislado de un paciente cubana, se clonó y finalmente se subclonó en el vector de expresión de E. coli pET26b. Se construyeron tres mutantes de deleción, que codifican para proteínas truncadas que carecen de 30 aminoácidos por el extremo carboxilo, en combinación con 5, 6 o ningún residuo delecionado por el extremo amino. La producción de las proteínas L1 en E. coli BL21(DE3) y E. coli SHuffle T7 se evaluó mediante SDS-PAGE y Western blot.
Resultados: El gen L1 del VPH-18 clonado fue 99.9 % similar a la variante africana EF202152 y probablemente comparte un origen común con el linaje B del genotipo 18. Las tres variantes truncadas de la proteína L1 del VPH-18 se produjeron a mayores niveles que la proteína L1 del VPH-18 de longitud completa, alcanzando mayores niveles en E. coli BL21(DE3) y mayor solubilidad en E. coli SHuffle. La variante truncada solo por el extremo carboxilo, L1C30, se produjo a niveles similares a las proteínas L1 del VPH-18 truncadas por ambos extremos. E. coli SHuffle produjo aproximadamente tres veces más cantidades de L1C30 cuando creció en condiciones de autoinducción, con respecto a la inducción convencional y, por ende, las cantidades fueron comparables a las obtenidas por E. coli BL21(DE3) bajo inducción convencional.
Conclusiones: La truncación de treinta residuos de aminoácidos por el extremo carboxilo de la proteína L1 del VPH-18 tuvo una importante contribución a la producción y solubilidad de la proteína L1 nativa en E. coli. Este es el primer informe sobre la producción soluble de la proteína L1 del VPH-18 en una cepa de E. coli SHuffle. Sin embargo, se necesitan mayores cantidades de la proteína L1 para escalar su producción para desarrollar un candidato vacunal contra el VPH.
REFERENCIAS (EN ESTE ARTÍCULO)
Munoz N, Castellsagué X, de González AB, Gissmann L. HPV in the etiology of human cancer. Vaccine. 2006;24:S1-S10.
Baker T, Newcomb W, Olson N, Cowsert L, Olson C, Brown J. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J. 1991;60(6):1445-56.
Hagensee ME, Yaegashi N, Galloway DA. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J. Virol. 1993;67(1):315-22.
Kirnbauer R, Booy F, Cheng N, Lowy D, Schiller J. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA. 1992;89(24):12180-4.
Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell. 2000;5(3):557-67.
Kirnbauer R, Taub J, Greenstone H, Roden R, Dürst M, Gissmann L, et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol. 1993;67(12):6929-36.
Lowy DR. HPV vaccination to prevent cervical cancer and other HPV-associated disease: from basic science to effective interventions. J Clin Invest. 2016 Jan;126(1):5-11. doi: 10.1172/JCI85446.
Bruni L, Barrionuevo-Rosas L, Serrano B, Mena M, Gómez D, Muñoz J, et al; ICO Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases. Summary Report May 19, 2017.
Pirog EC, Lloveras B, Molijn A, Tous S, Guimerà N, Alejo M, et al. HPV prevalence and genotypes in different histological subtypes of cervical adenocarcinoma, a worldwide analysis of 760 cases. Mod Pathol. 2014;27(12):1559-67.
Kim J-Y, Nam BH, Lee J-A. Is human papillomavirus genotype an influencing factor on radiotherapy outcome? Ambiguity caused by an association of HPV 18 genotype and adenocarcinoma histology. J Gynecol Oncol. 2011;22(1):32-8.
Sapp M, Fligge C, Petzak I, Harris JR, Streeck RE. Papillomavirus assembly requires trimerization of the major capsid protein by disulfides between two highly conserved cysteines. J. Virol. 1998;72(7):6186-9.
Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res. 2015 Feb;15(1):1-16.
Gu Y, Wei M, Wang D, Li Z, Xie M, Pan H, et al. Characterization of an Escherichia coli-derived human papillomavirus type 16 and 18 bivalent vaccine. Vaccine. 2017;35:4637-45.
Bishop B, Dasgupta J, Klein M, Garcea RL, Christensen ND, Zhao R, et al. Crystal structures of four types of human papillomavirus L1 capsid proteins: understanding the specificity of neutralizing monoclonal antibodies. J Biol Chem. 2007;282(43):31803-11.
Chen XS, Casini G, Harrison SC, Garcea RL. Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L1. J Mol Biol. 2001;307(1):173-82.
Bang HB, Lee YH, Lee YJ, Jeong KJ. High-level production of human papillomavirus (HPV) type 16 L1 in Escherichia coli. J Microbiol Biotechnol. 2016;26(2):356-63.
Hanslip SJ, Zaccai NR, Middelberg AP, Falconer RJ. Assembly of Human Papillomavirus Type‑16 Virus‑Like Particles: Multifactorial Study of Assembly and Competing Aggregation. Biotechnol Prog. 2006;22(2):554-60.
Ishii Y, Tanaka K, Kanda T. Mutational analysis of human papillomavirus type 16 major capsid protein L1: the cysteines affecting the intermolecular bonding and structure of L1-capsids. Virology. 2003;308(1):128-36.
Webb E, Cox J, Edwards S. Cervical cancer-causing human papillomaviruses have an alternative initiation site for the L1 protein. Virus genes. 2005;30(1):31-5.
Seo P, Heo S, Han E, Seo J, Ghim S, Kim Ch. Bacterial Expression and Purification of Human Papillomavirus Type 18 L1. Biotechnol. Bioprocess Eng. 2009;14:168-74.
Schadlich L, Senger T, Gerlach B, Mucke N, Klein C, Bravo IG, et al. Analysis of modified human papillomavirus type 16 L1 capsomeres: the ability to assemble into larger particles correlates with higher immunogenicity. J Virol. 2009;83(15):7690-705.
Deschuyteneer M, Elouahabi A, Plainchamp D, Plisnier M, Soete D, Corazza Y, et al. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix, the AS04-adjuvanted HPV-16 and -18 cervical cancer vaccine. Hum Vaccin. 2010;6(5):407-19.
Soto Y, Torres G, Kouri V, Limia CM, Goicolea A, Capo V, et al. Molecular epidemiology of human papillomavirus infections in cervical samples from Cuban women older than 30 years. J Low Genit Tract Dis. 2014;18(3):210-7.
Soto Y, Mune M, Morales E, Goicolea A, Mora J, Sanchez L, et al. Human papillomavirus infections in Cuban women with cervical intraepithelial neoplasia. Sex Transm Dis. 2007;34(12):974-6.
Ríos Hernández MA, Hernández Menéndez M, Aguilar Vela de Oro FO, Silveira Pablos M, Amigó de Quesada M, Aguilar Fabré K. Tipos de papilomavirus humanos más frecuentes en muestras cubanas de cáncer cervical. Rev Cubana Obstet Ginecol. 2010;36(2):104-11.
Piña Napal JC, Crespo Campos G, Fando Calzado R, Casanova Corona G, Curbelo Toledo M, Guerra Rodríguez MM. Identificación molecular de genotipos papilomavirus humanos en pacientes con cáncer de cuello uterino. Rev Arch Med Camagüey. 2016;20(3):288-98.
Soto Y, León CML, Cardellá VK, Maiza AG, de Paz VC, Jiménez MM. Papilomavirus humanos y otros factores asociados al desarrollo de lesiones cervicouterinas en mujeres cubanas. Panorama Cuba y Salud. 2016;11(1):24-33.
Soto Y, Limia CM, González L, Grá B, Hano OM, Martínez PA, et al. Molecular evidence of high-risk human papillomavirus infection in colorectal tumours from Cuban patients. Mem Inst Oswaldo Cruz. 2016;111(12):731-6.
Limia CM, Soto Y, García Y, Blanco O, Kourí V, López MV, et al. Human papillomavirus infection in anal intraepithelial lesions from HIV infected Cuban men. Infect Agent Cancer. 2017;12(1):5.
Ortega D, Palenzuela A, Tamayo L, Pascual M, Santana A, López M, et al. Prevalencia y distribución de genotipos de alto riesgo del virus del papiloma humano en una población de mujeres en La Habana. 8vo. Congreso Cubano de Microbiología y Parasitología en Cuba. La Habana, 14-16 de Octobre, 2014.
Chen Z, Schiffman M, Herrero R, DeSalle R, Anastos K, Segondy M, et al. Evolution and taxonomic classification of alphapapillomavirus 7 complete genomes: HPV18, HPV39, HPV45, HPV59, HPV68 and HPV70. PloS One. 2013;8(8):e72565.
Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009;27(10):946-50.
Seo SW, Yang J-S, Kim I, Yang J, Min BE, Kim S, et al. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency Metab Eng. 2013;15:67-74.
Pimienta E, Aldama G, Serrano Y, Rodríguez S, Otero A, Fando R, et al. Expresión del gen L1 del Virus del Papiloma Humano tipo 18, aislado de una biopsia de una paciente cubana, en cepas de Escherichia coli. Rev CENIC Ciencias Biológicas. 2018;49(3).
Studier FW. Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif. 2005;41(1):207-34.
Diederichs S, Korona A, Staaden A, Kroutil W, Honda K, Ohtake H, et al. Phenotyping the quality of complex medium components by simple online-monitored shake flask experiments. Microb Cell Fact. 2014;13(1):149.
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680.
Sambrook J, Fritsch E, Maniatis T. Molecular Cloning: a Laboratory Manual. 2nd ed. New York, EE UU: Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1989.
Lazar I, Lazar I. Gel Analyzer 2010a: Freeware 1D gel electrophoresis image analysis software. 2010 [cited 2017 Aug 20]. Available from: http://www.gelanalyzer.com/
Kelsall S, Kulski J. Expression of the major capsid protein of human papillomavirus type 16 in Escherichia coli J Virol Methods. 1995;53(1):75-90.
Doorbar J, Gallimore PH. Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus 1a. J. Virol. 1987;61(9):2793-9.
Faust G, Stand A, Weuster‑Botz D. IPTG can replace lactose in auto‑induction media to enhance protein expression in batch‑cultured Escherichia coli. Eng Life Sci. 2015;15(8):824-9.
Huang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines. 2017;2(1):3.
Muller M, Zhou J, Reed TD, Rittmuller C, Burger A, Gabelsberger J, et al. Chimeric papillomavirus-like particles. Virology. 1997;234(1):93-111.
Akuzum B, Kim S, Nguyen TT, Hong J, Lee S, Kim E, et al. L1 Recombinant Proteins of HPV Tested for Antibody Forming Using Sera of HPV Quadrivalent Vaccine. Immune Netw. 2018;18(3).
Mori S, Ozaki S, Yasugi T, Yoshikawa H, Taketani Y, Kanda T. Inhibitory cis-element-mediated decay of human papillomavirus type 16 L1-transcript in undifferentiated cells. Mol Cell Biochem. 2006;288(1-2):47-57.
Collier B, Oberg D, Zhao X, Schwartz S. Specific inactivation of inhibitory sequences in the 5' end of the human papillomavirus type 16 L1 open reading frame results in production of high levels of L1 protein in human epithelial cells. J Virol. 2002;76(6):2739-52.
Berg M, Di Fatta J, Hoiczyk E, Schlegel R, Ketner G. Viable adenovirus vaccine prototypes: high-level production of a papillomavirus capsid antigen from the major late transcriptional unit. Proc Natl Acad Sci USA. 2005;102(12):5.
Gustafsson C, Minshull J, Govindarajan S, Ness J, Villalobos A, Welch M. Engineering genes for predictable protein expression. Protein Expr Purif. 2012;83(1):37-46.
Allert M, Cox JC, Hellinga HW. Multifactorial determinants of protein expression in prokaryotic open reading frames. J Mol Biol. 2010;402(5):905-18.
Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, et al. Synonymous codons direct cotranslational folding toward different protein conformations. Mol Cell. 2016;61(3):341-51.
Wei M, Wang D, Li Z, Song S, Kong X, Mo X, et al. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro. Emerg Microbes Infect. 2018;7(1):160.
Wurm DJ, Quehenberger J, Mildner J, Eggenreich B, Slouka C, Schwaighofer A, et al. Teaching an old pET new tricks: tuning of inclusion body formation and properties by a mixed feed system in E. coli. Appl Microbiol Biotechnol. 2018;102(2):667-76.
Samuelson JC, Causey TB, Berkmen M. Disulfide-bonded protein production in E. coli. Genet Eng Biotechnol News. 2012;32(3).
Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact. 2012;11(1):753.