2018, Number 1
<< Back Next >>
Biotecnol Apl 2018; 35 (1)
Stability, safety and protective immunity of Gavac® vaccine subjected to heat stress
Vargas-Hernández M, Santana-Rodríguez E, Montero-Espinosa C, Sordo-Puga Y, Acosta-Hernández A, Fuentes-Rodríguez Y, Pérez-Pérez D, Oliva-Cárdenas A, González-Ramos E, Duarte CA, Moreira-Rubio A, Sánchez-Ortiz I, Domingo-Puentes M, Leon-Barreras L, Pena W, Suárez-Pedroso M
Language: English
References: 52
Page: 1222-1227
PDF size: 382.06 Kb.
ABSTRACT
Gavac
® is a commercial vaccine for the control of cattle tick (Rhipicephalus (Boophilus) microplus), containing the Bm86 protein antigen. The vaccine is supplied in multi-dose vials and the recommended application schedule includes two initial doses on days 0 and 28, followed by a boosting dose every 6 months. As any other vaccine, it requires cold chain conditions for storage and transportation, since heat stress conditions could affect vaccine efficacy. However, remaining vaccine doses once the vials are punctured, particularly in multidose vials, could generate a substantial loss of product due to the risk of vaccine instability. Therefore, this work was aimed to assess the safety and efficacy of the vaccine subjected to thermal stress in punctured vials to collect relevant information regarding the robustness of this immunogen under field conditions. It was found that pre-incubation of punctured vials at 37 °C up to 14 days neither increased the number of adverse reactions in experimental animals not the physicochemical properties of the emulsion. No statistical differences in the anti-Bm86 antibody titers were found after 7 days of incubation at 37 °C. Moreover, after 15 days of heat stress, Gavac
® was still capable of eliciting protective antibody titers, with the ability to affect the reproductive parameters of ticks. These results demonstrate the stability, safety and efficacy of Gavac® under these conditions and reinforce the robustness of the vaccine under field applications.
REFERENCES
Casas E, Trigueros A, Chávez A, Tang J, Ruiz F. Tratamiento y control de Garrapata Boophilus microplus, a través de la combinación de fluazurón/fipronilpouron, en bovinos de trópico. Pucallpa, Perú: Lima: Facultad de Medicina veterinaria, Universidad Nacional de San Marcos; 2009.
FAO. Tick and Tick Borne Diseases Control: A practical field manual. 2da Ed. Rome: FAO-UNDP; 1984.
Rojas M. Nosoparasitosis de los rumiantes peruanos. 2da Ed. Lima: Martegraf; 2004.
Urquhart GM, Armour J, Duncan JL, Dunn AM, Jenningsf W. Parasitología veterinaria. 2da Ed. Zaragoza: Acribia; 2001.
Nari A, Eddi CS. Control de la resistencia a los antiparasitarios a la luz de los conocimientos actuales. 2002 [cited 2018 Feb 18]. Available from: www.produccionanimal. com.ar
Suárez Pedroso M, Mellor LM, Valdez M, Souza RM, Camargo AJR, Vargas NC, et al. Control de las infestaciones de la garrapata Boophilus microplus en la ganadería Cubana y en regiones de latinoamérica con la aplicación del inmunógeno Gavac ® dentro de un programa de lucha integral. 2007 [cited 2018 Feb 18]. Available from: http://www.corpoica.org.co/ redectopar.asp
García A, Barral M. Métodos de control de las garrapatas. Ovis. 1999;65:1-9.
Gough JM, Kemp DH. Localization of a low abundance membrane protein (Bm86) on the gut cells of the cattle tick Boophilus microplus by immunogold labeling. J Parasitol. 1993;79(6):900-7.
Rand KN, Moore T, Sriskantha A, Spring K, Tellam R, Willadsen P, et al. Cloning and expression of a protective antigen from the cattle tick Boophilus microplus. Proc Natl Acad Sci U S A. 1989;86(24):9657-61.
Willadsen P, Riding GA, McKenna RV, Kemp DH, Tellam RL, Nielsen JN, et al. Immunologic control of a parasitic arthropod. Identification of a protective antigen from Boophilus microplus. J Immunol. 1989;143(4):1346-51.
Rodriguez M, Rubiera R, Penichet M, Montesinos R, Cremata J, Falcon V, et al. High level expression of the B. microplus Bm86 antigen in the yeast Pichia pastoris forming highly immunogenic particles for cattle. J Biotechnol. 1994;33(2):135-46.
Valle MR, Mendez L, Valdez M, Redondo M, Espinosa CM, Vargas M, et al. Integrated control of Boophilus microplus ticks in Cuba based on vaccination with the anti-tick vaccine Gavac. Exp Appl Acarol. 2004;34(3-4):375-82.
Vargas M, Montero C, Sanchez D, Perez D, Valdes M, Alfonso A, et al. Two initial vaccinations with the Bm86-based Gavacplus vaccine against Rhipicephalus (Boophilus) microplus induce similar reproductive suppression to three initial vaccinations under production conditions. BMC Vet Res. 2010;6:43.
Boue O, Redondo M, Montero C, Rodriguez M, de la Fuente J. Reproductive and safety assessment of vaccination with Gavac against the cattle tick (Boophilus microplus). Theriogenology. 1999;51(8):1547-54.
de la Fuente J, Rodriguez M, Redondo M, Montero C, Garcia-Garcia JC, Mendez L, et al. Field studies and cost-effectiveness analysis of vaccination with Gavac against the cattle tick Boophilus microplus. Vaccine. 1998;16(4):366-73.
Suarez M, Rubi J, Pérez D, Cordova V, Salazar Y, Vielma A, et al. High impact and effectiveness of Gavac™ vaccine in the national program for control of bovine ticks Rhipicephalus microplus in Venezuela. Livestock Sci. 2016;187:48-52.
Botello AR, Botello AL, Borroto CN, Suárez M, Pérez DA, Rodríguez YV, et al. Control de garrapatas Riphicephalus (Boophilus) microplus en bovinos con el inmunógeno Herber biogar. Rev Electrón Vet. 2011;12(5):1-10.
European Medicines Agency. Committee for Medicinal Products for Veterinary Use. Guideline on data requirements to support in-use stability claims for veterinary vaccines. EMA/CVMP/IWP/250147/2008. 2010 Mar 15 [cited 2018 Feb 18]. Available from: https://www.ema.europa.eu/ documents/scientific-guideline/guidelinedata- requirements-support-use-stabilityclaims- veterinary-vaccines_en.pdf.
Enríquez A, Canales M, Ramos E, Dandie H, Boué O, Soto A, et al. Production of a recombinant vaccine against Boophilus microplus. In: de la Fuente J, editor. Recombinant vaccines for the control of cattle tick. La Habana: Elfos Scientiae; 1995. p. 79-103.
Triguero A, Blanco R, Machado H, Rodriguez M, de La Fuente J. Development of enzyme linked immunosorbent assays to measure Bm86 antigen of Boophilus microplus (cattle tick) and to detect anti-Bm86 antibodies in serum samples. Biotechnol Tech. 1999;13(2):119-25.
European Medicines Agency, EMA. VICH Topic GL44. Step 7. Guideline on target animal safety for veterinary live and inactived vaccines. London: EMA; 2009.
Bennett GF. Oviposition of Boophilus microplus (Canestrini) (Acarida: Ixodidae). I. Influence of tick size on egg production. Acarologia. 1974;16(1):52-61.
Miller R, Estrada-Pena A, Almazan C, Allen A, Jory L, Yeater K, et al. Exploring the use of an anti-tick vaccine as a tool for the integrated eradication of the cattle fever tick, Rhipicephalus (Boophilus) annulatus. Vaccine. 2012;30(38):5682-7.
Baldrick P. Dose site reactions and related findings after vaccine administration in safety studies. J Appl Toxicol. 2016;36(8):980-90.
Lewis DJ, Lythgoe MP. Application of “Systems Vaccinology” to evaluate inflammation and reactogenicity of adjuvanted preventative vaccines. J Immunol Res. 2015;2015:909406.
Stassijns J, Bollaerts K, Baay M, Verstraeten T. A systematic review and meta-analysis on the safety of newly adjuvanted vaccines among children. Vaccine 2016;34(6):714-22.
Karp CL, Lans D, Esparza J, Edson EB, Owen KE, Wilson CB, et al. Evaluating the value proposition for improving vaccine thermostability to increase vaccine impact in low and middle-income countries. Vaccine. 2015;33(30):3471-9.
Purssell E. Reviewing the importance of the cold chain in the distribution of vaccines. Br J Community Nurs. 2015;20(10):481-6.
Singh M, O’Hagan DT. Recent advances in veterinary vaccine adjuvants. Int J Parasitol. 2003;33(5-6):469-78.
Spickler AR, Roth JA. Adjuvants in veterinary vaccines: modes of action and adverse effects. J Vet Intern Med. 2003;17(3):273-81.
Almazan C, Lagunes R, Villar M, Canales M, Rosario-Cruz R, Jongejan F, et al. Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations. Parasitol Res. 2010;106(2):471-9.
Cunha RC, Andreotti R, Leite FP. Rhipicephalus (Boophilus) microplus: expression and characterization of Bm86-CG in Pichia pastoris. Rev Bras Parasitol Vet. 2011;20(2):103-10.
de la Fuente J, Almazan C, Canales M, Perez de la Lastra JM, Kocan KM, Willadsen P. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev. 2007;8(1):23-8.
de la Fuente J, Kocan KM. Advances in the identification and characterization of protective antigens for recombinant vaccines against tick infestations. Expert Rev Vaccines. 2003;2(4):583-93.
de Vos S, Zeinstra L, Taoufik O, Willadsen P, Jongejan F. Evidence for the utility of the Bm86 antigen from Boophilus microplus in vaccination against other tick species. Exp Appl Acarol. 2001;25(3):245-61.
Rodriguez-Valle M, Taoufik A, Valdes M, Montero C, Ibrahin H, Hassan SM, et al. Efficacy of Rhipicephalus (Boophilus) microplus Bm86 against Hyalomma dromedarii and Amblyomma cajennense tick infestations in camels and cattle. Vaccine. 2012;30(23):3453-8.
Gerdts V. Adjuvants for veterinary vaccines- -types and modes of action. Berl Munch Tierarztl Wochenschr. 2015;128(11-12):456-63.
Kumar B, Murugan K, Ray DD, Ghosh S. Efficacy of rBm86 against Rhipicephalus (Boophilus) microplus (IVRI-I line) and Hyalomma anatolicum anatolicum (IVRI-II line) infestations on bovine calves. Parasitol Res. 2012;111(2):629-35.
Cobon G, Hungerford J, Woodrow M, Smith D, Willadsen P. Vaccination against Boophilus microplus. The Australian field experience. In: de la Fuente J, editor. Recombinant vaccines for the control of cattle tick. La Habana: Elfos Scientiae; 1995. p. 163-7.
de la Fuente J, Rodriguez M, Montero C, Redondo M, Garcia-Garcia JC, Mendez L, et al. Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac. Genet Anal. Eng. 1999;15(3-5):143-8.
Fragoso H, Rad PH, Ortiz M, Rodriguez M, Redondo M, Herrera L, et al. Protection against Boophilus annulatus infestations in cattle vaccinated with the B. microplus Bm86-containing vaccine Gavac. Vaccine. 1998;16(20):1990-2.
Canales M, Almazan C, Naranjo V, Jongejan F, de la Fuente J. Vaccination with recombinant Boophilus annulatus Bm86 ortholog protein, Ba86, protects cattle against B. annulatus and B. microplus infestations. BMC Biotechnol. 2009;9:29.
Garcia-Garcia JC, Montero C, Redondo M, Vargas M, Canales M, Boue O, et al. Control of ticks resistant to immunization with Bm86 in cattle vaccinated with the recombinant antigen Bm95 isolated from the cattle tick, Boophilus microplus. Vaccine. 2000;18(21):2275-87.
Andreotti R. Performance of two Bm86 antigen vaccine formulation against tick using crossbreed bovines in stall test. Rev Brasileira Parasitol Vet. 2006;15(3):97-100.
Miles AP, McClellan HA, Rausch KM, Zhu D, Whitmore MD, Singh S, et al. Montanide® ISA 720 vaccines: quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations. Vaccine. 2005;23(19):2530-9.
Barrera M, Sanchez O, Prieto Y, Castell S, Naranjo P, Rodriguez MP, et al. Thermal stress treatment does not affect the stability and protective capacity of goat milk derived E2-marker vaccine formulation against CSFV. Vet Immunol Immunopathol. 2009;127(3- 4):325-31.
American Animal Hospital Association. AAHA canine vaccination guidelines. 2017 [cited 2018 Jan 18]. Available from: https:// www.aaha.org/guidelines/canine_vaccination_ guidelines/cdc_vaccine_storage_ handling.aspx
U.S. Department of Health and Human Services, Center for Disease Control and Prevention. Vaccine storage & handling toolkit. Atlanta: Center for Disease Control and Prevention; 2018 [cited 2018 Feb 15]. Available from: https://www.cdc.gov/ vaccines/hcp/admin/storage/toolkit/storagehandling- toolkit.pdf
World Health Organization. Temperature sensitivity of vaccines. Geneva: Department of Immunization, Vaccines and Biologicals, World Health Organization; 2006.
World Health Organization. WHO policy statement: multi-dose vial policy (MDVP): handling of multi-dose vaccine vials after opening. Geneva: World Health Organization; 2014.
Sheth NK, Post GT, Wisniewski TR, Uttech BV. Multidose vials versus single-dose vials: a study in sterility and cost-effectiveness. J Clin Microbiol. 1983;17(2):377-9.
Christensen EA, Mordhorst CH, Jepsen OB. Assessment of risk of microbial contamination by use of multidose containers of injectable products. J Hosp Infect. 1992;20(4):301-4.