2018, Number 4
<< Back Next >>
Rev Hematol Mex 2018; 19 (4)
B lineage non Hodgkin lymphomas
Pérez-Zúñiga JM, Aguilar-Andrade C, Álvarez-Vera JL, Augusto-Pacheco M, Báez-Islas PE, Bates-Martín RA, Cervantes-Sánchez I, Espitia-Ríos ME, Estrada-Domínguez P, Jiménez-Alvarado R, Fermín-Caminero DJ, García-Camacho AS, Gómez-Rosas P, Grimaldo-Gómez FA, Guzmán-Mera P, Herrera-Olivares W, Martínez-Ramírez MA, Medina-Meza C, Mena-Zepeda V, Montoya-Jiménez L, Morales-Adrián JJ, Morales-Hernández AE, Mujica-Martínez A, Palma-Moreno OG, Reyes-Brena G, Reynoso-Pérez AC, Salazar-Ramírez Ó, Hernández-Ruiz E, Paredes-Lozano EP, Alvarado-Ibarra M
Language: Spanish
References: 67
Page: 189-214
PDF size: 567.44 Kb.
ABSTRACT
The knowledge about the ontogeny of non-Hodgkin’s lymphomas has allowed to specify
and separate some groups of non-Hodgkin’s lymphomas in terms of lineage, location,
clinical, genetic and molecular characteristics among others. Undoubtedly, an approach
to the lineage has contributed to improve response rates and survival, discriminating
specific histological varieties, which also rule the therapeutic behavior based on its
natural evolution, thus defining different treatment modes with results that seek different
objectives, among the best known, disease-free survival, free time to new treatment or
increase in overall survival. It is essential to use different tools, from natural history, sites
of presentation, histological characteristics, immunohistochemical markers, diagnostic
protocols with these markers that favor a more accurate reproducibility and diagnostic
approach. Likewise, the discernment of the different most frequent subgroups of LNH
lineage B favors the optimization of the results when diagnosing and treating with greater
precision, this document addresses the non-Hodgkin’s lymphomas of B phenotype that
we consider most frequent in our group, among those: diffuse large cells lymphoma,
follicular, small lymphocytes, marginal zone, mantle, MALT and Burkitt lymphoma.
Finally, some of the varieties can present themselves in a primary form in different
specific locations at gastric or the central nervous system that force to establish precise
treatments in these sites of presentation of the non-Hodgkin’s lymphomas.
REFERENCES
Morton LM, et al. Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. doi:10.1182/ blood-2005-06-2508.
Smith A, et al. Incidence of haematological malignancy by sub-type: a report from the Haematological Malignancy Research Network. doi:10.1038/bjc.2011.450.
Sant M, et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. doi:10.1182/blood-2010-05-282632.
Laurini JA, et al. Classification of non-Hodgkin lymphoma in Central and South America: a review of 1028 cases. doi:10.1182/blood-2012-07-440073.
Shenoy PJ, et al. Racial differences in the presentation and outcomes of diffuse large B-cell lymphoma in the United States. doi:10.1002/cncr.25765.
Meyer PN, et al. Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab. doi:10.1200/ JCO.2010.30.0368.
Swerdlow SH, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. doi:10.1182/blood-2016-01-643569.
Oliveira CC, et al. Double-hit lymphomas: clinical, morphological, immunohistochemical and cytogenetic study in a series of Brazilian patients with high-grade non-Hodgkin lymphoma. doi:10.1186/s13000-016-0593-0.
Lenz G, et al. Aggressive lymphomas. doi:10.1056/NEJMra0807082.
Stevenson F, et al. Insight into the origin and clonal history of B-cell tumors as revealed by analysis of immunoglobulin variable region genes. Immunol Rev 1998;162:247-259.
Knowles DM. Etiology and pathogenesis of AIDS-related non-Hodgkin’s lymphoma. Hematol Oncol Clin North Am 2003;17(3):785-820.
Nador RG, et al. Human immunodeficiency virus (HIV)- associated polymorphic lymphoproliferative disorders. Am J Surg Pathol 2003;27(3):293-302.
De Paepe P, et al. Large cleaved and immunoblastic lymphoma may represent two distinct clinicopathologic entities within the group of diffuse large B-cell lymphomas. doi:10.1200/JCO.2005.15.503.
Ottensmeier CH, et al. Isotype switch variants reveal clonally related subpopulations in diffuse large B-cell lymphoma. Blood 2000;96(7):2550-2556.
Slack GW, et al. CD30 expression in de novo diffuse large B-cell lymphoma: a population-based study from British Columbia. doi:10.1111/bjh.13085.
Hu S, et al. CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. doi:10.1182/blood-2012-10-461848.
Colomo L, et al. Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma. doi:10.1182/ blood-2002-04-1286.
Choi WWL, et al. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. doi:10.1158/1078-0432.CCR-09-0113.
Griffin TC, et al. A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B‐cell (CD20+) non‐Hodgkin lymphoma and mature B‐cell acute lymphoblastic leukemia: A report from the Children's Oncology Group. doi:10.1002/pbc.21753.
Radaszkiewicz T, et al. Gastrointestinal malignant lymphomas of the mucosa-associated lymphoid tissue: factors relevant to prognosis. Gastroenterology 1992;102(5):1628- 1638.
Zucca E, et al. The gastric marginal zone B-cell lymphoma of MALT type. Blood 2000;96(2):410-419.
Armitage JO, et al. New approach to classifying non- Hodgki’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. doi:10.1200/JCO.1998.16.8.2780.
Lecuit M, et al. Immunoproliferative small intestinal disease associated with Campylobacter jejuni. doi:10.1056/ NEJMoa031887.
Peterson MC. Immunoproliferative small intestinal disease associated with Campylobacter jejuni. doi:10.1056/ NEJM200404153501619.
Ruskoné-Fourmestraux A, et al. Predictive factors for regression of gastric MALT lymphoma after anti-Helicobacter pylori treatment. doi:10.1136/gut.48.3.297.
Steinbach G, et al. Antibiotic treatment of gastric lymphoma of mucosa-associated lymphoid tissue. An uncontrolled trial. Ann Intern Med 1999;131(2):88-95.
Smedby KE, et al. Autoimmune and inflammatory disorders and risk of malignant lymphomas--an update. doi:10.1111/j.1365-2796.2008.02029.x.
Lamovec J, et al. Primary malignant lymphoma of the breast. Lymphoma of the mucosa-associated lymphoid tissue. Cancer 1987;60(12):3033-3041.
Isaacson P, et al. Malignant lymphoma of mucosa-associated lymphoid tissue. A distinctive type of B-cell lymphoma. Cancer 1983;52(8):1410-1416.
Biagi JJ, et al. Insights into the molecular pathogenesis of follicular lymphoma arising from analysis of geographic variation. Blood 2002;99(12):4265-4275.
Shirley MH, et al. Incidence of haematological malignancies by ethnic group in England, 2001-7. doi:10.1111/ bjh.12562.
Junlén HR, et al. Follicular lymphoma in Sweden: nationwide improved survival in the rituximab era, particularly in elderly women: a Swedish Lymphoma Registry study. doi:10.1038/leu.2014.251.
Lorsbach RB, Shay-Seymore D, Moore J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood 2002;99(6):1959-1964.
Raghavan SC, et al. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. doi:10.1038/nature02355.
Aster JC, et al. Detection of the t(14;18) at similar frequencies in hyperplastic lymphoid tissues from American and Japanese patients. Am J Pathol 1992;141(2):291-299.
Cory S, et al. Killing cancer cells by flipping the Bcl-2/Bax switch. doi:10.1016/j.ccr.2005.06.012.
Harris NL, Nadler LM, Bhan AK. Immunohistologic characterization of two malignant lymphomas of germinal center type (centroblastic/centrocytic and centrocytic) with monoclonal antibodies. Follicular and diffuse lymphomas of small-cleaved-cell type are related but distinct entities. Am J Pathol 1984;117(2):262-272.
Karube K, et al. CD10-MUM1+ follicular lymphoma lacks BCL2 gene translocation and shows characteristic biologic and clinical features. doi:10.1182/blood-2006-09-045989.
Barry TS, et al. CD5+ follicular lymphoma: a clinicopathologic study of three cases. doi:10.1309/4KEH-AGY7-UT5H-41XJ.
Armitage JO, et al. New approach to classifying non- Hodgkin“s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. doi:10.1200/JCO.1998.16.8.2780.
Aoki H, et al. Frequent somatic mutations in D and/or JH segments of Ig gene in Waldenström“s macroglobulinemia and chronic lymphocytic leukemia (CLL) with Richter’s syndrome but not in common CLL. Blood 1995;85(7):1913-1919.
Dreyling M, et al. Update on the molecular pathogenesis and clinical treatment of mantle cell lymphoma: report of the 11th annual conference of the European Mantle Cell Lymphoma Network. doi:10.3109/10428194.2012.733882.
Jares P, et al. Molecular pathogenesis of mantle cell lymphoma. doi:10.1172/JCI61272.
Lardelli P, et al. Lymphocytic lymphoma of intermediate differentiation. Morphologic and immunophenotypic spectrum and clinical correlations. Am J Surg Pathol 1990;14(8):752-763.
Bosch F, et al. Mantle cell lymphoma: presenting features, response to therapy, and prognostic factors. Cancer 1998;82(3):567-575.
Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. doi:10.1111/j.1365-2141.2011.09013.x.
Ogwang MD, et al. Incidence and geographic distribution of endemic Burkitt lymphoma in northern Uganda revisited. doi:10.1002/ijc.23800.
Robbiani DF, et al. Plasmodium infection promotes genomic instability and AID-dependent B cell lymphoma. doi:10.1016/j.cell.2015.07.019.
Qian J, et al. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. doi:10.1016/j. cell.2014.11.013.
Wilson WH, et al. EPOCH chemotherapy: toxicity and efficacy in relapsed and refractory non-Hodgkin's lymphoma. doi:10.1200/JCO.1993.11.8.1573.
Dunleavy K, et al. DA-EPOCH chemotherapy is highly effective in ALK-positive and ALK-negative ALCL: Results of a prospective study of PTCL subtypes in adults. Blood 2011;118(21):1618-1618.
Freeman C, et al. Occurrence and prognosis of extranodal lymphomas. Cancer 1972;29(1):252-260.
Wotherspoon AC, et al. Low-grade gastric B-cell lymphoma of mucosa-associated lymphoid tissue (MALT): a multifocal disease. Histopathology 1992;20(1):29-34.
Wiersema MJ, et al. Endosonography-guided realtime fine-needle aspiration biopsy. Gastrointest Endosc 1994;40(6):700-707.
Papaxoinis G, Papageorgiou S, Rontogianni D, et al. Primary gastrointestinal non-Hodgkin’s lymphoma: a clinicopathologic study of 128 cases in Greece. A Hellenic Cooperative Oncology Group study (HeCOG). doi:10.1080/10428190600709226.
Koch P, et al. Primary gastrointestinal non-Hodgkin’s lymphoma: I. Anatomic and histologic distribution, clinical features, and survival data of 371 patients registered in the German Multicenter Study GIT NHL 01/92. doi:10.1200/ JCO.2001.19.18.3861.
Hoffman S, et al. Temporal trends in incidence of primary brain tumors in the United States, 1985-1999. doi:10.1215/ S1522851705000323.
Miller DC, et al. Pathology with clinical correlations of primary central nervous system non-Hodgkin's lymphoma. The Massachusetts General Hospital experience 1958- 1989. Cancer 1994;74(4):1383-1397.
Villano JL, et al. Age, gender, and racial differences in incidence and survival in primary CNS lymphoma. doi:10.1038/ bjc.2011.357.
Smith JR, et al. Expression of B-cell-attracting chemokine 1 (CXCL13) by malignant lymphocytes and vascular endothelium in primary central nervous system lymphoma. doi:10.1182/blood-2002-05-1576.
Aho R, et al. Binding of malignant lymphoid cells to the white matter of the human central nervous system: role of different CD44 isoforms, beta 1, beta 2 and beta 7 integrins, and L-selectin. J Neuropathol Exp Neurol 1997;56(5):557-568.
Baiocchi RA, et al. Phenotypic and functional analysis of Fas (CD95) expression in primary central nervous system lymphoma of patients with acquired immunodeficiency syndrome. Blood 1997;90(5):1737-1746.
Kadoch C, et al. Molecular pathogenesis of primary central nervous system lymphoma. Neurosurg Focus 2006;21(5):E1.
Tun HW, et al. Pathway analysis of primary central nervous system lymphoma. doi:10.1182/blood-2007-10-119099.
Esptein LG, et al. Primary lymphoma of the central nervous system in children with acquired immunodeficiency syndrome. Pediatrics 1988;82(3):355-363.
Hochberg FH, et al. Primary central nervous system lymphoma. doi:10.3171/jns.1988.68.6.0835.
Ponzoni M, et al. Reactive perivascular T-cell infiltrate predicts survival in primary central nervous system B-cell lymphomas. doi:10.1111/j.1365-2141.2007.06661.x.