2016, Number 2
<< Back Next >>
Med Crit 2016; 30 (2)
Glycocalyx. A structure to consider in the critically ill patient
Carrillo ER, Zepeda MAD, Flores ROI, Díaz GGA, González MIM, Araiza GD
Language: Spanish
References: 49
Page: 130-136
PDF size: 260.45 Kb.
ABSTRACT
Endothelial cells line the inner portion of the heart, blood vessels, and lymphatic vessels. The apical side of the endothelial cells is the site for glycocalyx, which is a complex network of macromolecules, including cell-bound proteoglycans and sialoproteins. This complex network envelops endothelial cells on their luminal side and inside clefts. The glycocalyx plays a key role in microvascular and endothelial physiology, in particular in regulating microvascular tone and endothelial permeability, maintaining an oncotic gradient across the endothelial barrier, regulating adhesion/migration of leukocytes, and inhibiting intravascular thrombosis. Acting through this mechanism, the glycocalyx contributes to the regulation of the local blood flow of organs and acts as an effector of metabolic coupling between organ function and local hemodynamics. The aim of this paper is to review current concepts related to function and dysfunction of glycocalyx and its impact in the critically ill.
REFERENCES
Lipowsky HH. Microvascular rheology and hemodynamics. Microcirculation. 2005;12(1):5-15.
Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000;440:653-666.
Evanko SP, Wight TN. Intracellular localization of hyaluronan in proliferating cells. J Histochem Cytochem. 1999;47:1331-1342.
Mulivor AW, Lipowsky HH. Inflammation-and ischemia-induced shedding of venular glycocalyx. Am J Physiol Heart Circ Physiol. 2004;286(5):H1672-H1680.
Nandi A, Estess P, Siegelman MH. Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44. J Biol Chem. 2000;275:14939-14948.
Weigel PH, Hascall VC, Tammy M. Hyaluronan synthases. J Biol Chem. 1997;272:13997-14000.
Grammatikakis N, Grammatikakis A, Yoneda M, Yu Q, Banerjee SD, Toole BP. A novel glycosaminoglycan-binding protein is the vertebrate homologue of the cell cycle control protein, Cdc37. J Biol Chem. 1995;270:16198-16205.
Ballinger ML, Nigro J, Frontanilla KV, Dart AM, Little PJ. Regulation of glycosaminoglycan structure and atherogenesis. Cell Mol Life Sci. 2004;61(11):1296-1306.
Vogl-Willis CA, Edwards IJ. High-glucose-induced structural changes in the heparan sulfate proteoglycan, perlecan, of cultured human aortic endothelial cells. Biochim Biophys Acta. 2004;1672:36-45.
Egbrink MG, Van Gestel MA, Broeders MA, Tangelder GJ, Heemskerk JM, Reneman RS, et al. Regulation of microvascular thromboembolism in vivo. Microcirculation. 2005;12:287-300.
Dole VS, Bergmeier W, Mitchell HA, Eichenberger SC, Wagner DD. Activated platelets induce Weibel-Palade-body secretion and leukocyte rolling in vivo: role of P-selectin. Blood. 2005;106:2334-2339.
Koedam JA, Cramer EM, Briend E, Furie B, Furie BC, Wagner DD. P-selectin, a granule membrane protein of platelets and endothelial cells, follows the regulated secretory pathway in AtT-20 cells. J Cell Biol. 1992;116:617-625.
Curry FR. Microvascular solute and water transport. Microcirculation. 2005;12:17-31.
Boude MG, Janssen GH, Ookawa K, Slaaf DW, Reneman RS, Wehrens XH, et al. Especially polymorphonuclear leukocytes, but also monomorphonuclear leukocytes, roll spontaneously in venules of intact rat skin: involvement of E-selectin. J Invest Dermatol. 2002;118:323-326.
Wu G, Essex DW, Meloni FJ, Takafuta T, Fujimura K, Konkle BA, et al. Human endothelial cells in culture and in vivo express on their surface all four components of theglycoprotein Ib/IX/V complex. Blood. 1997;90:2660-2669.
Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med. 1998;187:329-339.
Ruegg C, Mariotti A. Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cell Mol Life Sci. 2005;60:1135-1157.
Muller AM, Hermanns MI, Cronen C, Kirkpatrick CJ. Comparative study of adhesion molecule expression in cultured human macro- and microvascular endothelial cells. Exp Mol Pathol. 2005;73:171-180.
Huang MT, Mason JC, Birdsey GM, Amsellem V, Gerwin N, Haskard DO, et al. Endothelial intercellular adhesion molecule (ICAM)-2 regulates angiogenesis. Blood. 2005;106:1636-1643.
Berndt MC, Shen Y, Dopheide SM, Gardiner EE, Andrews RK. The vascular biology of the glycoprotein Ib-IX–V complex. Thromb Haemost. 2001;86:178-188.
Huxley VH, Curry FE. Differential actions of albumin and plasma on capillary solute permeability. Am J Physiol. 2001;260:1645-1654.
Tarbell JM, Weinbaum S, Kamm RD. Cellular fluid mechanics and mechanotransduction. Ann Biomed Eng. 2005;33:1719-1723.
Van Haaren PM, VanBavel E, Vink H, Spaan JA. Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy. Am J Physiol Heart Circ Physiol. 2003;285:2848-2856.
Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1995;167:13-46.
Rehm M, Zahler S, Lotsch M, Welsch U, Conzen P, Jacob M, et al. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology. 2004;100:1211-1223.
Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol. 2003;23:1541-1547.
Pries AR, Secomb TW. Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol Heart Circ Physiol. 2005;289:2657-2664.
Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995;75:519-560.
Mochizuki S, Vink H, Hiramatsu O, Kajita T, Shigeto F, Spaan JA, et al. Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am J Physiol Heart Circ Physiol. 2003;285:722-726.
Tarbell JM, Pahakis MY. Mechanotransduction and the glycocalyx. J Intern Med. 2006;259:339-350.
Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development. 2004;131:6009-6021.
Shimada K, Kobayashi M, Kimura S, Nishinaga M, Takeuchi K, Ozawa T. Anticoagulant heparin-like glycosaminoglycans on endothelial cell surface. Jpn Circ J. 1991;55:1016-1021.
Kato H. Regulation of functions of vascular wall cells by tissue factor pathway inhibitor: basic and clinical aspects. Arterioscler Thromb Vasc Biol. 2002;22:539-548.
Li Q, Bolli R, Qiu Y, Tang XL, Murphree SS, French BA. Gene therapy with extracellular superoxide dismutase attenuates myocardial stunning in conscious rabbits. Circulation. 1998;98:1438-1448.
Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006;55:480-486.
Granger DN. Ischemia-reperfusion: mechanisms of microvascular dysfunction and the influence of risk factors for cardiovascular disease. Microcirculation. 1999;6:167-178.
Kurose I, Argenbright LW, Wolf R, Lianxi L, Granger D. Ischemia/reperfusion-induced microvascular dysfunction: role of oxidants and lipid mediators. Am J Physiol. 1997;272:2976-2982.
Rubio-Gayosso I, Platts SH, Duling BR. Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2006;290:2247-2256.
Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868-874.
Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation. 2000;101:1500-1502.
Nieuwdorp M, Meuwese MC, Vink H, Hoekstra JB, Kastelein JJ, Stroes ES. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol. 2005;16:507-511.
Peters K, Unger R, Brunner J, Kirkpatrick C. Molecular basis of endothelial dysfunction in sepsis. Cardiovasc Res. 2003;60:49-57.
Carrillo-Esper R, González-Salazar J. Inflamación-endotelio-coagulación en sepsis. Conceptos actuales. Cir Ciruj. 2002;70:433-441.
Yang Y, Schmidt E. The endothelial glycocalyx: an important regulator of the pulmonary vascular barrier. Tissue Barriers. 2013;1(1). pii: 23494.
Kohler M, Kaufmann I, Briegel J, Jacob M, Goeschl J, Rachninger W, et al. The endothelial glycocalyx degenerates with increasing sepsis severity. Crit Care. 2011;15:P22.
Steppan J, Hofer S, Funke B, Brenner T, Henrich M, Martin E, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalyx. J Surg Res. 2011;165:136-141.
Kolárová H, Ambruzová B, Svihálková S, Klinke A, Kubala L. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm. 2014;2014:694312.
Burke-Gaffney A, Evans T. Lest we forget the endothelial glycocalyx in sepsis. Critical Care. 2012;16(2):121.
Annane D. Corticosteroids for severe sepsis: an evidence-based guide for physicians. Ann Intensive Care. 2011;1:7.