2015, Number 1
<< Back Next >>
Rev Cubana Farm 2015; 49 (1)
In vitro antibacterial activity of nineteen essential oils against acne-associated bacteria
Matiz MGE, León MG, Osorio FMR
Language: Spanish
References: 26
Page: 103-116
PDF size: 210.41 Kb.
ABSTRACT
Objectives: to assess the antibacterial activity of 19 essential oils against three bacterial strains associated with acnes occurrence, (
Propionibacterium acnes,
Staphylococcus epidermidis and
Staphylococcus aureus), and to select the most promising oils on the basis of their minimum inhibitory concentrations and chemical
composition, in order to design pharmaceutical dosage forms for topical acne treatment.
Methods: bacteria were replicated using specific agars and broths. Time of maximum optical density (OD
620) was determined to use it as the incubation time. Then susceptibility evaluation tests were made by exposing strains to 1000ppm concentrations of each of the oils in broth. The 95:4:1 broth:ethanol:polysorbate- 80 mixture was used to make oils soluble. For those oils which inhibited growth by
more than 90%, their minimum inhibitory concentrations were determined by broth microdilution methodology and its chemical composition through gas chromatography/mass spectroscopy.
Results: out of the 19 oils, seven were able to inhibit growth by more than 90% at 1000ppm for the three strains. Estimated minimum growth concentrations
ranged 300 to 900ppm. The chemical composition of all oils was consistent with that reported in the literature.
Conclusions: the thyme (
Thymus vulgaris L.), cinnamon (
Cinnamomum verum J. Presl) and clove (
Eugenia caryophyllata T.) oils, reached the lowest minimum inhibitory concentrations; additionally, according to the literature, the most abundant components of the promising oils are well known by its anti-inflammatory activity and therefore it is feasible to design topical pharmaceutical forms for the treatment of acne.
REFERENCES
Matiz G, Osorio MR, Camacho F, Atencia M, Herazo J. Diseño y evaluación in vivo de fórmulas para acné basadas en aceites esenciales de naranja (Citrus sinensis), albahaca (Ocimum basilicum L) y ácido acético. Biomédica: Revista del Instituto Nacional de Salud. 2012;32(1).
Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet. 2012;379(9813):361-72.
Fisk WA, Lev-Tov HA, Sivamani RK. Botanical and Phytochemical Therapy of Acne: A Systematic Review. Phytother Res. 2014;In Press:1-16.
CLSI. Performance standards for Antimicrobial susceptibility testing, 21st international supplements. CLSI Document M100-S21. Wayne, Pennysylavania, USA: Clinical and Laboratory Standards Institute; 2011.
Sutton S. Measurement of cell concentration in suspension by optical density. Pharmaceutical Microbiology Forum Newsletter. 2006;12(8):3-13.
Bogut A, Niedźwiadek J, Kozio-Montewka M, Strzelec-Nowak D, Blacha J, Mazurkiewicz T, et al. Characterization of Staphylococcus epidermidis and Staphyloccocus warneri small-colony variants associated with prosthetic-joint infections. J Med Microbiol. 2014;63(Pt 2):176-85.
Pérez JE, Isaza G, Acosta S. Actividad antibacteriana de extractos de Phenax rugosus y Tabebuia chrysantha. Biosalud. 2007;6:59-68.
Rojas J, García A, López A. Evaluación de dos metodologías para determinar la actividad antimicrobiana de plantas medicinales. Boletín Latinoamericano y del Caribe de plantas medicinales y aromáticas. 2005;4(2):28-32.
Ramírez A, Stella L, Marín D. Metodologías para evaluar in vitro la actividad antibacteriana de compuestos de origen vegetal. Scientia et Technica. 2009;15(42):263-8.
López A, García A, Rojas J. Evaluación de dos metodologías para determinar la actividad antimicrobiana de plantas medicinales. Boletín Latinoamericano y del Caribe de plantas medicinales y aromáticas. 2005;4(002):28-32.
Gibbons S. Plants as a source of bacterial resistance modulators and antiinfective agents. Phytochem Rev. 2005;4(1):63-78.
Franco L, Matiz G, Pájaro Bolivar I, Gómez H. Actividad Antibacteriana in vitro de Extractos y Fracciones de Physalis peruviana L. y Caesalpinia pulcherrima (L.) Swartz. Boletín Latinoamericano y del Caribe de plantas medicinales y aromáticas. 2013;12(3):230-7.
Baharum SN, Bunawan H, Ghani MaA, Mustapha WAW, Noor NM. Analysis of the chemical composition of the essential oil of Polygonum minus Huds. using twodimensional gas chromatography-time-of-flight mass spectrometry (GC-TOF MS). Molecules. 2010;15(10):7006-15.
Tomy GT, Stern GA, Muir DC, Fisk AT, Cymbalisty CD, Westmore JB. Quantifying C10-C13 polychloroalkanes in environmental samples by highresolution gas chromatography/electron capture negative ion high-resolution mass spectrometry. Anal Chem. 1997;69(14):2762-71.
Akthar MS, Degaga B, Azam T. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: A review. Issues in Biological Sciences and Pharmaceutical Research. 2014;2(1):1-7.
Ghosh V, Mukherjee A, Chandrasekaran N. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids Surf B Biointerfaces. 2014;114:392-7.
Gomes C, Moreira RG, Castell-Pérez E. Poly (DL-lactide-co-glycolide)(PLGA) Nanoparticles with Entrapped trans-Cinnamaldehyde and Eugenol for Antimicrobial Delivery Applications. J Food Sci. 2011;76(2):N16-N24.
Kavoosi G, Dadfar SMM, Mohammadi Purfard A, Mehrabi R. Antioxidant and antibacterial properties of gelatin films incorporated with carvacrol. J Food Saf. 2013;33(4):423-32.
Moreira A, Carmo E, Wanderley P, de Souza E, de Oliveira E. Inhibitory effect of the essential oil from Hyptis suaveolens (l.) Poit on the growth and aflatoxins synthesis of Aspergillus flavus. J Life Sci. 2013;7(3):276-81.
Nostro A, Scaffaro R, D’Arrigo M, Botta L, Filocamo A, Marino A, et al. Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities. J Microbiol Biotechnol. 2012;96(4):1029-38.
Ramos M, Jiménez A, Peltzer M, Garrigós MC. Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J Food Eng. 2012;109(3):513-9.
Reddy B, Angers P, Gosselin A, Arul J. Characterization and use of essential oil from Thymus vulgaris against Botrytis cinerea and Rhizopus stolonifer in strawberry fruits. Phytochemistry. 1998;47(8):1515-20.
Sanla-Ead N, Jangchud A, Chonhenchob V, Suppakul P. Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulosebased packaging films. Packag Technol Sci. 2012;25(1):7-17.
Sundrarajan M, Rukmani A. Durable antibacterial finishing on cotton by impregnation of limonene microcapsules. Advanced Chemistry Letters. 2013;1(1):40-3.
Ye H, Shen S, Xu J, Lin S, Yuan Y, Jones GS. Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria. Food Control. 2013;34(2):619-23.
Wattanasatcha A, Rengpipat S, Wanichwecharungruang S. Thymol nanospheres as an effective anti-bacterial agent. Int J Pharm. 2012;434(1):360-5.