2005, Number 3-4
<< Back Next >>
Microbiología 2005; 47 (3-4)
Stationary phase in Escherichia coli
Ramírez SJ, Contreras FG, Gómez EMC
Language: Spanish
References: 60
Page: 92-101
PDF size: 104.98 Kb.
ABSTRACT
When nutrients become scarce E. coli cells enter into a non-growth phase known as stationary and develop a multiple-stress resistance state analogue to sporulation in B. subtilis. Morphological changes are observed, including rounded shape, loss of flagella and thickening of the cell wall. General metabolism is re-directed, macromolecular degradation is increased, and storage and osmoprotection compounds are synthesized. The reorganization of the nucleoid is accompanied by an overall repression of gene expression, but a subset of genes required for starvation survival become transcribed in a manner dependent on the stationary phase-specific subunit of RNA polymerase (RpoS or ss). The regulatory function of ss seems to be central to a global gene network that is beginning to be understood. Also, stationary phase populations are highly heterogeneous in properties as viability, genotype, and mutability. The emergence of mutant subpopullations capable of using nutrient traces suggest survival strategies during long term starvation. This review focuses on the major characteristics of E. coli during stationary phase and on the regulatory gene network responsible of such characteristics.
REFERENCES
Ahmer, B. M. M. 2004. Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol. Microbiol. 52:933-945.
Akerlund, T., K. Nordström & R. Bernander. 1995. Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli. J. Bacteriol. 177:6791-6797.
Ali Azam, T., A. Iwata, A. Nishimura, S. Ueda & A. Ishihama. 1999. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol. 181:6361-6370.
Almirón, M., A. J. Link, D. Furlong & R. Kolter. 1992. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes and Development 6:2646-2654.
Amitai, S., Y. Yassin & H. Engelberg-Kulka. 2004. MazF-mediated cell death in Escherichia coli: a point of no return. J. Bacteriol. 186:8295-8300.
Bachmann, B. J. 1972. Pedigrees of some mutants strains of Escherichia coli K12. Bacteriol. Rev. 36:525-557.
Barak, Z., J. Gallant, D. Lindsley, B. Kwieciszewki & D. Heidel. 1996. Enhanced ribosome frameshifting in stationary phase cells. J. Mol. Biol. 263:140-148.
Bloch, P. L., T. A. Phillips & F. C. Neidhardt. 1980. Protein identification on O´Farrell two-dimensional gels: Locations of 81 Escherichia coli proteins. J. Bacteriol. 141:1409-1420.
Cairns, J. & P. L. Foster. 1991. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128:695-701.
Cuny, C., L. Dukan, L. Fraysse, M. Ballesteros & S. Dukan. 2005. Investigation of the first events leading to loss of culturability during Escherichia coli starvation: Future non culturable bacteria form a subpopulation. J. Bacteriol. 187:2244-2248.
Desnues, B., C. Cuny, G. Grégori, S. Dukan, H. Aguilaniu & T. Nyström. 2003. Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep. 4:400-404.
Engelberg-Kulka, H. & G. Glaser. 1999. Addition modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53:43-70.
Ericsson, M., D. Hanstorp, P. Hagberg, J. Enger & T. Nyström. 2000. Sorting out bacterial viability with optical tweezers. J. Bacteriol. 182:5551-5555.
Farrell, M. J. & S. E. Finkel. 2003. The growth advantage in stationary-phase phenotype conferred by rpoS mutations is dependent on the pH and nutrient environment. J. Bacteriol. 185:7044-7052.
Finkel, S. E., E. R. Zinser & R. Kolter. 2000. Long-term survival and evolution in the stationary phase, pp.231-238. In G. Storz & R. Hengge-Aronis (Eds). Bacterial Stress Responses, American Society for Microbiology, Washington D.C.
Foster, P. L. 2004. Adaptive mutation in Escherichia coli. J. Bacteriol. 186:4846-4852.
García del Portillo, F., A. G. Pisabarro, E. J. de la Rosa & M. A. de Pedro. 1987. Modulation of cell wall synthesis by DNA replication in Escherichia coli during initiation of cell growth. J. Bacteriol. 169:2410-2416.
Gerdes, K. 2000. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J. Bacteriol. 182:561-572.
Gómez-Eichelmann, M. C. & R. Camacho-Carranza. 1995. El nucleoide bacteriano. Rev. Latinoam. Microbiol. 37:281-290.
Gómez-Eichelmann, M. C. & R. Camacho-Carranza. 1995. El superenrollamiento del DNA y topoisomerasas en Escherichia coli. Rev. Latinoam. Microbiol. 37:291-304.
Goodrich-Blair, H., M. Uría-Nickelsen & R. Kolter. 1996. Regulation of gene expression in stationary phase, pp. 571-583. In E. C. C. Lin & A. Simon Lynch (Eds). Regulation of Gene Expression in Escherichia coli, R. G. Landes Co. N.Y.
Hayes, F. 2003. Toxin-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301:1496-1499.
Hengge-Aronis, R. 1999. Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr. Opin. Microbiol. 2:148-152.
Hengge-Aronis, R. 2000. The general stress response in Escherichia coli, pp. 161-178. In G. Stortz & R. Hengge-Aronis (Eds). Bacterial Stress Responses, American Society for Microbiology, Washington D.C.
Hengge-Aronis, R. 2002. Signal transduction and regulatory mechanisms involved in control of the ss (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66:373-395.
Hughes, D. & D. I. Andersson. 1997. Carbon starvation of Salmonella typhimurium does not cause a general increase of mutation rates. J. Bacteriol. 179:6688-6691.
Huisman, G. W., D. A. Siegele, M. Zambrano & R. Kolter. 1996. Morphological and physiological changes during stationary phase, pp. 1672-1682. In F.C. Neidhardt (Ed.). Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, American Society for Microbiology, Washington D.C.
Ishihama, A. 1999. Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival. Genes to Cells 4:135-143.
Ishihama, A. 2000. Functional modulation of Escherichia coli RNA polymerase. Annu. Rev. Microbiol. 54:499-518.
Jacob, F. & J. Monod. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318-356.
Johnson, R. C., L. M. Johnson, J. W. Schmidt & J. F. Gardner. 2005. Major nucleoid proteins in the structure and function of the Escherichia coli chromosome, pp. 65-132. In N. Patrick Higgins (Ed.). The Bacterial Chromosome, American Society for Microbiology, Washington D.C.
Khil, P. P. & D. Camerini-Otero. 2002. Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol. Microbiol. 44:89-105.
Kohara, Y., K. Akiyama & K. Isono. 1987. The physical map of the whole Escherichia coli chromosome: Application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495-508.
Kolter, R., D. A. Siegele & A. Tormo. 1993. The stationary phase of the bacterial cycle. Annu. Rev. Microbiol. 47:855-74.
Lacour, S. & P. Landini. 2004. ss-dependent gene expression at the onset of stationary phase in Escherichia coli: Function of ss-dependent genes and identification of their promoter sequences. J. Bacteriol. 186:7186-7195.
Loewe, L., V. Textor & S. Scherer. 2003. High deleterious genomic mutation rate in stationary phase of Escherichia coli. Science 302:1558-1560.
Makinoshima, H., S.-I. Aizawa, H. Hayashi, T. Miki, A. Nishimura & A. Ishihama. 2003. Growth phase-coupled alterations in cell structure and function of Escherichia coli. J. Bacteriol. 185:1338-1345.
Makinoshima, H., A. Nishimura & A. Ishihama. 2002. Fractionation of Escherichia coli cell populations at different stages during growth transition to stationary phase. Mol. Microbiol. 43:269-279.
Martínez, A. & R. Kolter. 1997. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J. Bacteriol. 179: 5188-5194.
Membrillo-Hernández, J., A. Nuñez-de la Mora, T. del Rio-Albrechtsen, R. Camacho-Carranza & M. C. Gómez-Eichelmann. 1995. Thermally-induced cell lysis in Escherichia coli K12. J. Basic Microbiol. 35:45-50.
Miller, J. H. 1992. A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, New York.
Minsky, A. & R. Kolter. 2005. Stationary-phase chromosomes, pp. 155-166. In N. Patrick Higgins (Ed.). The Bacterial Chromosome. American Society for Microbiology, Washington D.C.
Newman, E. B. & R. Lin. 1996. The leucine/Lrp regulon, pp. 419-433. In E. C. C. Lin, A. S. Lynch (Eds.). Regulation of gene expression in Escherichia coli. R. G. Landes Co. and Chapman & Hall, U.S.A.
Nyström, T. 2004. Stationary-phase physiology. Annu. Rev. Microbiol. 58:161-181.
Nyström, T., K. Flärdh & S. Kjelleberg. 1990. Responses to multiple-nutrient starvation in marine Vibrio sp. Strain CCUG 15956. J. Bacteriol. 172:7085-7097.
Pandey, D. P. & K. Gerdes. 2005. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33:966-976.
Patten, C. L., M. G. Kirchof, M. R. Schertzberg, R. A. Morton & H. E. Schellhorn. 2004. Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol. Gen. Genomics 272:580-591.
Resendis-Antonio, O., J. A. Freyre-González, R. Menchaca-Méndez, R. M. Gutiérrez-Ríos, A. Martínez-Antonio, C. Ávila-Sánchez & J. Collado-Vides. 2005. Modular analysis of the transcriptional regulatory network of Escherichia coli. TRENDS in Genet. 21:16-20.
Reyes-Domínguez, Y., G. Contreras-Ferrat, J. Ramírez-Santos, J. Membrillo-Hernández & M. C. Gómez-Eichelmann. 2003. Plasmid DNA supercoiling and gyrase activity in Escherichia coli wild-type and rpoS stationary-phase cells. J. Bacteriol. 185:1097-1100.
Riley, M. & M. H. Serres. 2000. Interim report on genomics of Escherichia coli. Annu. Rev. Microbiol. 54:341-411.
Rosenberg, S.M. & P. J. Hastings. 2004. Adaptive point mutation and adaptative amplification pathways in the Escherichia coli Lac system: Stress responses producing genetic change. J. Bacteriol. 186:4838-4843.
Tani, T. H., A. Khodursky, R. M. Blumenthal, P. O. Brown & R. G. Matthews. 2002. Adaptation to famine: A family of stationary-phase genes revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 99:13471-13476.
Vijayakumar, S. R. V., M. G. Kirchof, C. L Patten, & H. E. Schellhorn. 2004. RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J. Bacteriol. 186:8499-8507.
Wada, A. 1998. Growth phase coupled modulation of Escherichia coli ribosomes. Genes to Cells 3:203-208.
Weber, H., T. Polen, J. Heuveling, V. F. Wendisch & R. Hengge. 2005. Genome-wide analysis of the general stress response network in Escherichia coli: ss-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol. 187:1591-1603.
Withers, H. L. & K. Nordström. 1998. Quorum-sensing acts at initiation of chromosomal replication in Escherichia coli. Proc. Natl. Acad. Sci. USA 95:15694-15699.
Wolf, S. G., D. Frenkiel, T. Arad, S. E. Finkel, R. Kolter & A. Minsky. 1999. DNA protection by stress-induced biocrystallization. Nature 400:83-85.
Yoon, S. H., M.-J. Han, S. Y. Lee, K. J. Jeong & J.-S. Yoo. 2003. Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol. and Bioengineering 81:753-767.
Yoshida, H., H. Yamamoto, T. Uchiumi & A. Wada. 2004. RMF inactivates ribosomes by covering the peptidyl-transferase centre and entrance of peptide exit tunnel. Genes Cells 9:271-278.
Zambrano, M. M. & R. Kolter. 1996. GASPing for life in stationary phase. Cell 86:181-184.