2014, Number 1
<< Back Next >>
Biotecnol Apl 2014; 31 (1)
Recombinant hybrid proteins from pertactin type 1 and 2 of Bordetella pertussis are more immunogenic in mice than the original molecules
Quintana-Vázquez D, Coizeau E, Alvarez A, Delgado M, Cárdenas T, Ramos Y, Chinea G, Berbers GAM, Guillén GE
Language: English
References: 33
Page: 33-42
PDF size: 342.22 Kb.
ABSTRACT
The present study explores the concept of hybrid pertactin (PRN) molecules for immunizing against Bordetella pertussis.
New molecules were designed using an additive/inclusive approach that comprehends the complete sequences/regions of two different types of pertactin (Prn). PRN molecules bear the two variable R1 regions from Prn1 and Prn2. The genes of Prn1, Prn2 and six variants of PRN were cloned in
Escherichia coli, and PRN proteins were over-expressed at 25-30 % of total protein concentrations using the pET28a/BL21 Codonplus RP expression system. The proteins
were purified (› 90 % purity) using the His-tag /Ni-NTA affinity method with amounts of 8-10 mg/g of wet biomass. After refolding, the PRNs were recognized by anti-Prn monoclonal antibodies that bind protective conformational and linear epitopes/regions. Moreover, a panel of ten sera from individuals boosted with a commercial vaccine reacted with the PRN molecules without differences from the P.69 protein. The PRN proteins were highly immunogenic in Balb/c mice, with the induction of the IgG2a and IgG2b subtypes. Particularly, two PRNs (PRN2-lc-1 › PRN2-1) induced highly significant anti-Prn1 antibody levels (p ‹ 0.001). Moreover, the PRN2-lc-1 induced higher levels of antibodies (p ‹ 0.05) against epitopes located at the immunodominant N-terminus region and the variable region R1. The PRN2-lc-1 and PRN2-1 molecules exhibited an enhanced immunological profile in Balb/c mice in terms of level of whole anti-Prn IgG antibodies in respect to natural Prn controls. These two molecules constitute valuable candidates for further evaluation in vivo in acellular vaccine formulations.
REFERENCES
Bordet J, Gengou O. Le microbe de la coqueluche. Ann Inst Pasteur (Paris). 1906;20:731-41.
Willems RJL, Mooi FR. From whole cell to acellular pertussis vaccines. Rev Med Microbiol. 1996;7:13-21.
Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev. 2005;18(2):326-82.
He Q, Mertsola J. Factors contributing to pertussis resurgence. Future Microbiol. 2008;3(3):329-39.
Mooi FR. Bordetella pertussis and vaccination: the persistence of a genetically monomorphic pathogen. Infect Genet Evol. 2010;10(1):36-49.
King AJ, Berbers G, van Oirschot HF, Hoogerhout P, Knipping K, Mooi FR. Role of the polymorphic region 1 of the Bordetella pertussis protein pertactin in immunity. Microbiology. 2001;147(Pt 11):2885-95.
Komatsu E, Yamaguchi F, Eguchi M, Watanabe M. Protective effects of vaccines against Bordetella parapertussis in a mouse intranasal challenge model. Vaccine. 2010;28(27):4362-8.
Aminian M, Sivam S, Lee CW, Halperin SA, Lee SF. Expression and purification of a trivalent pertussis toxin-diphtheria toxin-tetanus toxin fusion protein in Escherichia coli. Protein Expr Purif. 2007;51(2):170-8.
Jinyong Z, Xiaoli Z, Weijun Z, Ying G, Gang G, Xuhu M, et al. Fusion expression and immunogenicity of Bordetella pertussis PTS1-FHA protein: implications for the vaccine development. Mol Biol Rep. 2011;38(3):1957-63.
Hijnen M, van Gageldonk PG, Berbers GA, van Woerkom T, Mooi FR. The Borde- tella pertussis virulence factor P.69 pertactin retains its immunological properties after overproduction in Escherichia coli. Protein Expr Purif. 2005;41(1):106-12.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947-8.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-12.
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:40.
Emsley P, Charles IG, Fairweather NF, Isaacs NW. Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature. 1996;381(6577):90-2.
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed.New York: Cold Spring Harbor Laboratory Press; 1989.
Kasuga T, Nakase Y, Ukishima K, Takatsu T. Studies on Haemophilis pertussis. III. Some properties of each phase of H. pertussis. Kitasato Arch Exp Med. 1954;27(3):37-47.
Imai Y, Matsushima Y, Sugimura T, Terada M. A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res. 1991;19(10):2785.
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5.
Hijnen M, Mooi FR, van Gageldonk PG, Hoogerhout P, King AJ, Berbers GA. Epitope structure of the Bordetella pertussis protein P.69 pertactin, a major vaccine component and protective antigen. Infect Immun. 2004;72(7):3716-23.
Castellanos-Serra L, Ramos Y, Huerta V. An in-gel digestion procedure that facilitates the identification of highly hydrophobic proteins by electrospray ionization-mass spectrometry analysis. Proteomics. 2005;5(11):2729-38.
Oliver DC, Huang G, Nodel E, Pleasance S, Fernandez RC. A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol Microbiol. 2003;47(5):1367-83.
Hijnen M, de Voer R, Mooi FR, Schepp R, Moret EE, van Gageldonk P, et al. The role of peptide loops of the Bordetella pertussis protein P.69 pertactin in antibody recognition. Vaccine. 2007;25(31):5902-14.
Mosiej E, Augustynowicz E, Zawadka M, Dabrowski W, Lutynska A. Strain variation among Bordetella pertussis isolates circulating in Poland after 50 years of whole- cell pertussis vaccine use. J Clin Microbiol. 2011;49(4):1452-7.
Borisova O, Kombarova SY, Zakharova NS, van Gent M, Aleshkin VA, Mazurova I, et al. Antigenic divergence between Bordetella pertussis clinical isolates from Moscow, Russia, and vaccine strains. Clin Vaccine Immunol. 2007;14(3):234-8.
Bottero D, Gaillard ME, Fingermann M, Weltman G, Fernandez J, Sisti F, et al. Pulsed-field gel electrophoresis, pertactin, pertussis toxin S1 subunit polymorphisms, and surfaceome analysis of vaccine and clinical Bordetella pertussis strains. Clin Vaccine Immunol. 2007;14(11):1490-8.
Zhang L, Xu Y, Zhao J, Kallonen T, Cui S, Hou Q, et al. Effect of vaccination on Bordetella pertussis strains, China. Emerg Infect Dis. 2010;16(11):1695-701.
van Gent M, van Loo IH, Heuvelman KJ, de Neeling AJ, Teunis P, Mooi FR. Studies on Prn variation in the mouse model and comparison with epidemiological data. PLoS One. 2011;6(3):e18014.
Hijnen M, He Q, Schepp R, Van Gageldonk P, Mertsola J, Mooi FR, et al. Antibody responses to defined regions of the Bor- detella pertussis virulence factor pertactin. Scan J Infect Dis. 2008;40(2):94-104.
Stenger RM, Poelen MC, Moret EE, Kuipers B, Bruijns SC, Hoogerhout P, et al. Immunodominance in mouse and human CD4+ T-cell responses specific for the Bordetella pertussis virulence factor P.69 pertactin. Infect Immun. 2009;77(2):896-903.
Skerry CM, Mahon BP. A live, attenuated Bordetella pertussis vaccine provides long-term protection against virulent challenge in a murine model. Clin Vaccine Immunol. 2011;18(2):187-93.
Nimmerjahn F, Ravetch JV. Fcgamma receptors: old friends and new family members. Immunity. 2006;24(1):19-28.
Hellwig SM, Rodriguez ME, Berbers GA, van de Winkel JG, Mooi FR. Crucial role of antibodies to pertactin in Bordetella pertussis immunity. J Infect Dis. 2003;188(5):738-42.
Mooi FR, He Q, van Oirschot H, Mertsola J. Variation in the Bordetella pertussis virulence factors pertussis toxin and pertactin in vaccine strains and clinical isolates in Finland. Infect Immun. 1999;67(6):3133-4.