2014, Número 1
<< Anterior Siguiente >>
Biotecnol Apl 2014; 31 (1)
Ecuación estequiométrica para describir el crecimiento de Pleurotus ostreatus cepa ceba-gliie-po-010606
Pineda-Insuasti JA, Soto-Arroyave CP, Ramos-Sánchez LB
Idioma: Español
Referencias bibliográficas: 38
Paginas: 43-47
Archivo PDF: 319.46 Kb.
RESUMEN
Se desarrolló una ecuación estequiométrica aproximada que describe el crecimiento de la cepa ceba-gliie-010106 de
Pleurotus ostreatus sobre residuos de la cosecha del fréjol. El trabajo parte de establecer fórmulas empíricas
para el residuo del fréjol fresco seco (CH
1.81O
0.81N
0.15) y la biomasa de la cepa del hongo (CH
1.83O
0.84N
0.26). Para ello se determinó la composición elemental de estas materias primas y su contenido de cenizas. Los coeficientes
estequiométricos permiten estimar importantes parámetros del proceso de crecimiento; entre ellos: la eficiencia
biológica teórica (867.49 g de materia seca del hongo (MSH)/kg de materia seca del sustrato), el coeficiente medio
de respiración (0.77 mol CO
2/mol O
2), el consumo específico de aire para el proceso de crecimiento (1.36 m
3/kg MSH), así como el calor metabólico (16 576.47 kJ/kg MSH).
REFERENCIAS (EN ESTE ARTÍCULO)
Álvarez-Castillo A, García-Hernández E, Domínguez-Domínguez MM, Granandos- Baeza J, Aguirre-Cruz A, Morales-Cepeda A, et al. Aprovechamiento integral de los materiales lignocelulósicos. Rev Iberoam Polim. 2012;13(4):140-50.
Chukwurah NF, Eze SC, Chiejina NV, Onyeonagu CC, Ugwuoke KI, Ugwu FSO, et al. Performance of oyster mushroom (Pleurotus ostreatus) in different local agricultural waste materials. Afr J Biotechnol. 2012;11(37):8979-85.
Mane VP, Patil SS, Syed AA, Baig MM. Bioconversion of low quality lignocellulosic agricultural waste into edible protein by Pleurotus sajor-caju (Fr.) Singer. J Zhejiang Univ Sci B. 2007;8(10):745-51.
Pineda-Insuasti J, Ramos-Sanchez LB. Producción de proteínas comestibles con fuentes alternativas de materias primas. Axioma. 2013;1(10):5-9.
Álvaro H, inventor; Garrigues Fongs SL; assignee. Procedimiento para la obtención de una composición de un substrato para el cultivo de hongos. Spain patent ES 2 166 337 A1. 2000 Jul 24.
Dunn-Coleman NS, Michaels TJ, inventors; Monterey Mushrooms, Inc., assignee. Composting process for the production of mushroom cultivation substrates. United States patent US 4848026 A. 1989 Jul 18.
Giovannozzi G, Luigi P, Baldo R, Porri A, D’Annibale A, Perani C, inventors; Consiglio Nazionale Delle Ricerche, Università Studi Della Tuscia, assignee. Process for the production of cellulose paper pulps by biodelignification vegetative masses. United States patent US 6379495 B1. 2002 Abr 30.
Hisakazu I, Oaza S, Hanishina-Gun N, inventors; Hisakazu Ikeda, assignee. Obtaining edible material fron fungusdigested medium. Europe patent EP 0357320 A2. 1989 Aug 22.
Ikeda H, inventor; Ikeda H, assignee. Edible material containing mushroom. United States patent US 5028441 A. 1991 Jul 2.
Kok T, inventor; Everbloom Mushroom (Pte) Ltd., assignee. Mushrooms cultivation. Europe patent EP 0248636 A3. 1987 Jun 2.
Ladisch M, Kohlman K, Westgate P, Weil J, Yang Y, inventors; Purdue Research Foundation Office of Technology Transfer, assignee. Processes for treating cellulosic material. United States patent US 5846787. 1998 Jul 11.
Mee H, inventor; The Kinoko Company, assignee. Method for growing wood mushroom. United States patent US 4127965. 1978 Dec 5.
Suryanarayan S, Mazundar K, inventors; Biocon India Limited, assignee. Solid state fermentation. United States patent US 6197573 B1. 2001 Mar 6.
Toth E, Toth L, Heltay I, inventors; Licencia Talalmanyokat Ertekesito Vallalat, assignee. Mushroom growing process. United States patent US 3996038. 1976 Dec 7.
Kiparissides A, Koutinas M, Kontoravdi C, Mantalaris A, Pistikopoulos EN. Closing the loop in biological systems modeling - From the in silico to the in vitro. Automática. 2011;47(6):1147-55.
Rodríguez-Fernández M, Balsa-Canto E, Egea JA, Banga JR. Identifiability and robust parameter estimation in food process modeling: Application to a drying model. J Food Eng. 2007;83(3):374-83.
Nfor BK, Verhaert PD, van der Wielen LA, Hubbuch J, Ottens M. Rational and systematic protein purification process development: the next generation. Trends Biotechnol. 2009;27(12):673-9.
Lam M. In silico dynamic optimisation studies for batch/fed-batch mammalian cell suspension cultures producing biopharmaceuticals [dissertation]. London: Imperial College; 2009.
Ertola R, Yantorno O, Mignone C. Microbiología industrial. Washington: OEA; 1994.
Sinclair CG. Cinética de los procesos microbianos. In: Bu’lock JD, Kristiansen B, editors. Biotecnología básica. Zaragoza: Editorial Acribia S.A.; 1991. p. 75-133.
Oakland J. Statistical process control. 5th ed. Oxford: Butterworth-Heinemann Ltd.; 2003.
Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel. 2013;105:19-39.
Thompson M, editor. CHNS Elemental Analysers Report. AMC Technical Briefs [Internet]. 2008 Apr [cited 2013 Jan 6];(29):[2 p.]. Available from: http://www.rsc.org/images/ CHNS-elemental-analysers-technicalbrief- 29_tcm18-214833.pdf
Francis FJ, editor. Wiley Encyclopedia of Food Science and Technology. 2nd ed. England: John Wiley and Sons; 1999.
PerkinElmer. 2400 Series II CHNS/O Elemental Analysis. Organic Elemental Analysis. Waltham: PerkinElmer, Inc.; c2013 [cited 2013 Jan 6]; Available from: http://www.perkinelmer.com/Catalog/ Product/ID/N2410650
McNeil B, Harvey LM. Practical fermentation technology. England: John Wiley & Sons, Ltd.; 2008.
Castellanos J, García A, Herrera N, Rodríguez J, Pérez A. Estimación del calor de reacción en el transcurso de bioprocesos. Centro Azúcar. 2002;28(1):37-46.
Parikh J, Channiwala SA, Ghosal GK. A Correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel. 2007;86(12-13): 1710-9.
Cuiping L, Chuangzhi W, Yanyongjie, Haitao H. Chemical elemental characteristics of biomass fuels in China. Biomass Bioenerg. 2004;27(2):119-30.
Sánchez JE, Mata G. Hongos comestibles y medicinales en Iberoamérica: investigación y desarrollo en un entorno multicultural. Tapachula: El Colegio de la Frontera Sur; 2012.
Vargas-Moreno JM, Callejón-Ferre AJ, Pérez-Alonso J, Velázquez-Martí B. A review of the mathematical models for predicting the heating value of biomass materials. Renew Sust Energ Rev. 2012; 16(5):3065-83.
Shen J, Zhu S, Liu X, Zhang H, Tan J. The prediction of elemental composition of biomass based on proximate analysis. Energ Convers Manage. 2010;51(5):983-7.
Yépez B, Converti A, Maugeri F. Intrinsic activity of inulinase from Kluyveromyces marxianus ATCC 16045 and carbon and nitrogen balances. Food Technol Biotechnol. 2006;44(4):479-83.
Andrino A, Morte MA, Honrubia M. Caracterización y cultivo de tres cepas de Pleurotus eryngii (Fries) Quélet sobre sustratos basados en residuos agroalimentarios. An Biol. 2011;(33):53-66.
Pineda J, Ramos L, Soto C. Cinética del crecimiento de Pleurotus ostreatus en la etapa de producción del cuerpo fructífero. ICIDCA. Sobre los derivados de la caña de azúcar. 2013;47(3):56-61.
Dimian AC, Sorin C. Chemical processing design: Computer-aided case study. Weinheim: Wiley VCH Verlag GmbH & Co. KGaA; 2008.
Mitchell D, Krieger N, Berovic M, editors. Solid-state fermentation bioreactors: Fundamentals of design and operation. New York: Springer; 2006.
González DM, Echevarría HR, Hernández AP. Termodinámica para ingenieros químicos. La Habana: Editorial Félix Varela; 2006.