2014, Number 1
<< Back Next >>
Investigación en Discapacidad 2014; 3 (1)
Basal ganglia. Striatal dopaminergic participation
Avila-Luna A, Bueno-Nava A
Language: Spanish
References: 29
Page: 19-24
PDF size: 294.51 Kb.
ABSTRACT
Basal ganglia are associated to motor and non-motor functions. The neostriatum nucleus is involved into basal ganglia, and its function is critically dopamine-regulated by activation of post-synaptic D
1 and D
2 receptors, which are present in mid-size spinous neurons, in the middle of direct striato-nigral and indirect striato-palidal pathways, respectively. Striatal dopamine release after application of dopaminergic agonists and antagonists is explained through the negative backfeeding system that involves those pre- and post-synaptic receptors. The study of dopaminergic striatal system may enhance the understanding of the basal ganglia function as well as their disfunction. The present paper intends to explain the striatal dopaminergic participation in basal ganglia and their motor function.
REFERENCES
1.Bolam JP, Hanley JJ, Booth PA, Bevan MD. Synaptic organization of the basal ganglia. J Anat. 2000; 196: 527-542.
2.Jaeger D, Kita H. Functional connectivity and integrative properties of globus pallidus neurons. Neuroscience. 2011; 198: 44-53.
3.Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ. Principles of Neural Science. 5th ed. New York: McGraw-Hill; 2013.
4.Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM. The subthalamic nucleus in the context of movement disorders. Brain. 2004; 127: 4-20.
5.Zhou FM, Lee CR. Intrinsic and integrative properties of substantia nigra pars reticulata neurons. Neuroscience. 2011; 15 (198): 69-94.
6.Groenewegen HJ. The basal ganglia and motor control. Neural Plast. 2003; 10: 107-120.
7.Kreitzer AC, Malenka RC. Striatal plasticity and basal ganglia circuit function. Neuron Rev. 2008; 60: 543-554.
8.Surmeier DJ, Ding J, Day M, Wang Z, Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 2007; 30: 228-235.
9.Wilson CJ, Kawaguchi Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci. 1996; 16: 2397-2410.
10.Palermo-Neto J. Dopaminergic systems. Dopamine receptors. Psychiatr Clin North Am. 1997; 20: 705-721.
11.Jackson DM, Westlind-Danielsson A. Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Therapeut. 1994; 64: 291-370.
12.Saklayen SS, Mabrouk OS, Pehek EA. Negative feedback regulation of nigrostriatal dopamine release: mediation by striatal D1 receptors. J Pharmacol Exp Ther. 2004; 311: 342-348.
13.Wolf ME, Deutch AY, Roth RH. Pharmacology of central dopaminergic neurons. En: Henn FA, DeLisi LE, Eds. Handbook of Schizophrenia, Vol. 2: Neurochemistry and Neuropharmacology of Schizophrenia. New York: Elsevier; 1987. pp. 101-147.
14.Abraini JH, Fechtali T, Rostain JC. Lasting effects of dopamine receptor agonists upon striatal dopamine release in free-moving rats: an in vivo voltammetric study. Brain Res. 1994; 642: 199-205.
15.Imperato A, Mulas A, Di Chiara G. The D-1 antagonist SCH23390 stimulates while the D-1 agonist SKF38393 fails to affect dopamine release in the dorsal caudate of freely moving rats. Eur J Pharmacol. 1987; 142: 177-181.
16.Imperato A, Di Chiara G. Effects of locally applied D-1 and D-2 receptor agonists and antagonists studied with brain dialysis. Eur J Pharmacol. 1988; 156: 385-393.
17.Zackheim JA, Abercrombie ED. Decreased striatal dopamine efflux after intrastriatal application of benzazepine-class D1 agonists is not mediated via dopamine receptors. Brain Res. Bull. 2001; 54: 603-607.
18.Bueno-Nava A, Gonzalez-Pina R, Alfaro-Rodriguez A, Avila-Luna A, Arch-Tirado E, Alonso-Spilsbury M. The selective inhibition of the D1 dopamine receptor results in an increase of metabolized dopamine in the rat striatum. Neurochem Res. 2012; 37: 1783-1789.
19.Westerink BH, Vries JB. On the mechanism of neuroleptic induced increase in striatal dopamine release: brain dialysis provides direct evidence for mediation by autoreceptors localized on nerve terminals. Neurosci Lett. 1989; 99: 197-202.
20.Sotnikova T, Gainetdinov RR, Grekhova TV, Rayevsky KS. Effects of intrastriatal infusion of D2 and D3 dopamine receptor preferring antagonists on dopamine release in rat dorsal striatum (in vivo microdialysis study). Pharmacol Res. 2001; 43: 283-290.
21.Burkhardt JM, Jin X, Costa RM. Dissociable effects of dopamine on neuronal firing rate and synchrony in the dorsal striatum. Front Integr Neurosci. 2009; 3: 28.
22.Sokoloff P, Leriche L, Le Foll B. Dopamine receptors. Structure, function and implication in psychiatric disorders. In: Gorwood P, Hamon M, ed. Psychopharmacogenetics. New York, NY, USA: Springer Science+Business Media, Inc.; 2006. pp. 357-419.
23.Martín AB, Fernandez-Espejo E, Ferrer B, Gorriti MG, Bilbao A, Navarro M et al. Expression and function of CB1 receptor in the rat striatum: localization and effects on D1 and D2 dopamine receptor-mediated motor behaviors. Neuropsychopharmacology. 2008; 33: 1667-1679.
24.Hiroi N, Martín AB, Grande C, Alberti I, Rivera A, Moratalla R. Molecular dissection of dopamine receptor signaling. J Chem Neuroanat. 2002; 23: 237-242.
25.Darmopil S, Martín AB, De Diego IR, Ares S, Moratalla R. Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry. 2009; 66: 603-613.
26.Xu M, Koeltzow TE, Santiago GT, Moratalla R, Cooper DC, Hu X-T, et al. Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron. 1997; 19: 837-848.
27.Elizabeth A. Sabens, Kelly M. Steller, John J. Mieyal Levodopa activates apoptosis signaling kinase 1 (ASK1) and promotes apoptosis in a neuronal model: implications for the treatment of Parkinson’s Disease. Chem Res Toxicol. 2011; 24 (10): 1644-1652.
28.Nestler EJ, Hyman SE, Malenka RC. Molecular neuropharmacology. 2a ed. McGraw-Hill, New York; 2009.
29.Mark K. Lyons mayo. Deep brain stimulation: current and future clinical applications. Clin Proc. 2011; 86 (7): 662-672.