2012, Number 2
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2012; 15 (2)
La mitocondria como fábrica de cofactores: biosíntesis de grupo hemo, centros Fe-S y nucleótidos de flavina (FMN/FAD)
Villavicencio-Queijeiro A
Language: Spanish
References: 85
Page: 116-132
PDF size: 540.75 Kb.
ABSTRACT
Iron-sulphur clusters, heme cofactors and flavin-nucleotides are essential for many microorganisms. There are
many proteins that depend upon them to perform their biological activities. These cofactors have been
recognized as essential for redox reactions and are also involved in many cellular functions such as chemical
catalysis, regulation and signalling. Many groups have contributed to the establishment of the biochemical
routes by which these cofactors are synthesized, transported and regulated in different organisms. All this
knowledge has allowed to link defects on these routes with diseases and syndromes, as well as to propose new
therapeutic strategies and biotechnological applications.
REFERENCES
Sassa, S. & Nagai, T. The role of heme in gene expression. Int. J. Hematol. 63, 167-178 (1996).
Tang, X.D., Xu, R., Reynolds, M.F., Garcia, M.L., Heinemann, S.H. & Hoshi, T. Haem can bind to and inhibit mammalian calciumdependent Slo1 BK channels. Nature 425, 531-535 (2003).
Imaizumi, S., Kay, A. & Schroeder, J.I. Circadian rhythms. Daily watch on metabolism. Science 318, 1730-1731 (2007).
Chernova, T., Smith, A.G. & Lloyd Raven, E. The regulatory role of heme in neurons. Metallomics 3(10), 955-962 (2011).
Hardison, R.C. A brief history of hemoglobins: Plant, animal, protist, and bacterial. Proc. Nat. Acad. Sci. USA 93, 5675-5679 (1996).
Franken, A.C. et al. Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl. Microbiol. Biotechnol. 91(3), 447-460 (2011).
Hoffman, M., Góra, M. & Rytka, J. Identification of rate-limiting steps in yeast heme biosynthesis. Biochem. Biophys. Res. Commun. 310(4), 1247-1253 (2003).
Zagorec, M. et al. Isolation, sequence, and regulation by oxygen of the yeast HEM13 gene coding for coproporphyrinogen oxidase. J. Biol. Chem. 263(20), 9718-9724 (1998).
Dailey, T.A. & Dailey, H.A. Identification of [2Fe–2S] clusters in microbial ferrochelatases. J. Bacterial. 184(9), 2460-2464 (2002).
Bermúdez Moretti, M., Correa García, S & Batlle, A. Porphyrin biosynthesis intermediates are not regulating -aminolevulinic acid transport in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 272(3), 946-950 (2000).
Morgan, E.H. Transferrin biochemistry, physiology and clinical significance. Mol. Aspects. Med. 4, 1-23 (1981).
Goya, N., Miyazalo, S., Kodate, S. & Ushino, E. A family of congenital atransferrinemia. Blood 40, 239-245 (1972).
Hamza, I. Intracellular trafficking of porphyrins. ACS Chem. Biol. 1(10), 627-629 (2006).
Tsuchida, M., Emi, Y., Kida, Y. & Sakaguchi, M. Human ABC transporter isoform B6 (ABCB6) localizes primarily in the Golgi apparatus. Biochem. Biophys. Res. Commun. 369(2), 369-375 (2008).
Krishnamurthy, P.C. et al. Identification of a mammalian mitochondrial porphyrin transporter. Nature 443, 586-589 (2006).
Keng, T. & Guarente, L. Constitutive expression of the yeast HEM1 gene is actually a composite of activation and repression. Proc. Natl. Acad. Sci. USA 84(24), 9113-9117 (1987).
Leustek, T. et al. Siroheme biosynthesis in higher plants. Analysis of an S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase from Arabidopsis thaliana. J. Biol. Chem. 272(5), 2744-2752 (1997).
Kasting, J.F. & Howard, M.T. Atmospheric composition and climate on the early Earth. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361, 1733-1741 (2006).
Beinert, H., Holm, R.H. & Münck, E. Iron-sulfur clusters: nature’s modular, multipurpose structures. Science277, 653-659 (1997).
Meyer, J. Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. J. Biol. Inorg. Chem. 13, 157-170 (2008).
Bandyopadhyay, S., Chandramouli, K. & Johnson, M.K. Ironsulfur cluster biosynthesis. Biochem. Soc. Trans. 36, 1112- 1119 (2008).
Fontecave, M. & Ollagnier-de-Choudens, S. Iron-sulfur cluster biosynthesis in bacteria: mechanisms of cluster assembly and transfer. Arch. Biochem. Biophys. 474, 226-237 (2008).
Lill, R. & Mühlenhoff, U. Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu. Rev. Cell Dev. Biol. 22, 457-486 (2006).
Lill, R. & Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 77, 669-700 (2008).
Lill, R. Function and biogenesis of iron-sulphur proteins. Nature460 (7257), 831-838 (2009).
Zheng, L., Cash, V.L., Flint, D.H. & Dean, D.R. Assembly of ironsulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J. Biol. Chem. 273, 13264- 13272 (1998).
Schilke, B., Voisine, C., Beinert, H. & Craig, E. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 96, 10206-10211 (1999).
Yuvaniyama, P., Agar, J.N., Cash, V.L., Johnson, M.K. & Dean, D.R. NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc. Natl. Acad. Sci. USA 97, 599- 604 (2000).
Kaiser, J.T. et al. Crystal structure of a NifS-like protein from Thermotoga maritima: implications for iron-sulfur cluster assembly. J. Mol. Biol. 297, 451-464 (2000).
Cupp-Vickery, J.R., Urbina, H. & Vickery, L.E. Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. J. Mol. Biol. 330, 1049-1059 (2003).
Gerber, J., Mühlenhoff, U. & Lill, R. An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep. 4, 906-911 (2003).
Bencze, K.Z. et al. The structure and function of frataxin. Crit. Rev. Biochem. Mol. Biol. 41, 269-291 (2006).
Mühlenhoff, U., Gerber, J., Richhardt, N. & Lill, R. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J. 22, 4815-4825 (2003).
Gelling, C., Dawes, I.W., Richhardt, N., Lill, R. & Mühlenhoff, U. Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol. Cell. Biol. 28, 1851-1861 (2008).
Loiseau, L. et al. ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 104, 13626–13631 (2007).
Takahashi, Y. & Tokumoto, U. A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J. Biol. Chem. 277, 28380-28383 (2002).
Tokumoto, U., Kitamura, S., Fukuyama, K. & Takahashi, Y. Interchangeability and distinct properties of bacterial Fe-S cluster assembly systems: functional replacement of the isc and suf operons in Escherichia coli with the nifSU-like operon from Helicobacter pylori. J. Biochem. 136, 199-209 (2004).
Ayala-Castro, C., Saini, A. & Outten, F. W. Fe-S cluster assembly pathways in bacteria. Microbiol. Mol. Biol. Rev. 72, 110-125 (2008).
Outten, F.W., Wood, M.J., Muñoz, F.M. & Storz, G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe- S cluster assembly in E. coli. J. Biol. Chem. 278, 45713-45719 (2003).
Loiseau, L., Ollagnier-de-Choudens, S., Nachin, L., Fontecave, M. & Barras, F. Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J. Biol. Chem. 278, 38352-38359 (2003).
Xu, X.M. & Moller, S.G. Iron-sulfur cluster biogenesis systems and their crosstalk. Chem. Bio. Chem. 9, 2355-2362 (2008).
Rouault, T.A. & Tong, W.H. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nature Rev. Mol. Cell Biol. 6, 345-351 (2005).
Rouault, T.A. & Tong, W.H. Iron-sulfur cluster biogenesis and human disease. Trends Genet. 24, 398-407 (2008).
Kispal, G., Csere, P., Prohl, C. & Lill, R. The mitochondrial proteins Atm1p and Nfs1p are required for biogenesis of cytosolic Fe/ S proteins. EMBO J. 18, 3981-3989 (1999).
Roy, A., Solodovnikova, N., Nicholson, T., Antholine, W. & Walden, W.E. A novel eukaryotic factor for cytosolic Fe-S cluster assembly. EMBO J. 22, 4826-4835 (2003).
Rudolf, J., Makrantoni, V., Ingledew, W.J., Stark, M.J. & White, M.F. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol. Cell. 23, 801-808 (2006).
Kispal, G. et al. Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. EMBO J. 24, 589-598 (2005).
Tovar, J. et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature426, 172-176 (2003).
Goldberg, A.V. et al. Localization and functionality of microsporidian iron–sulphur cluster assembly proteins. Nature 452, 624-628 (2008).
De Colibus, L. & Mattevi, A. New frontiers in structural flavoenzymology. Curr. Opin. Struct. Biol.16, 722-728 (2006).
Haupt, W. Chloroplast movement: from phenomenology to molecular biology. Prog. Bot. 60, 3-35 (1999).
Briggs, W.R. & Christie, J.M. Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7, 204-210 (2002).
Drepper, T. et al. Reporter proteins for in vivo fluorescence without oxygen. Nat. Biotechnol. 25, 443-445 (2007).
Tielker, D., Eichhof, I., Jaeger, K.E., Ernst, J.F. Flavin mononucleotide-based fluorescent protein as an oxygenindependent reporter in Candida albicans and Saccharomyces cerevisiae. Eukaryot. Cell. 8, 913-915 (2009).
Fraga, A.A. & Reddy, C.A. Nutritional requirements of Corynebacterium pyogenes. J. Clin. Microbiol. 16, 334-340 (1982).
Siddiqi, R. & Khan, M.A. Vitamin and nitrogen base requirements for Listeria monocytogenes and haemolysin production. Zentralbl. Bakteriol. Mikrobiol. Hyg. A. 253, 225-235 (1982).
Terrade, N. & Mira de Orduña, R. Determination of the essential nutrient requirements of wine-related bacteria from the genera Oenococcus and Lactobacillus. Int. J. Food Microbiol. 133, 8- 13 (2009).
Stahmann, K.P., Revuelta, J.L. & Seulberger, H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol. 53(5), 509-516 (2000).
Katagiri, H., Yamada, H. & Imai, K. Biosynthesis of flavin coenzymes by microorganisms. II. Enzymatic synthesis of flavin adenine dinucleotide in Escherichia coli. J. Vitaminol. 5, 307-311 (1959).
Kearney, E.B. & Englard, S. The enzymatic phosphorylation of riboflavin. J. Biol. Chem. 193, 821-834 (1951).
Kobayashi, T. & Suzue, T. Flavin adenine dinucleotide-synthesizing enzyme in Eremothecium ashbyii. J. Vitaminol. 7, 42-47 (1961).
Schrecker, A.W. & Kornberg, A. Reversible enzymatic synthesis of flavin-adenine dinucleotide. J. Biol. Chem. 182, 795-803 (1950).
Fischer, M. & Bacher, A. Biosynthesis of flavocoenzymes. Nat. Prod. Rep. 22, 324-350 (2005).
Fischer, M. & Bacher, A. Biosynthesis of vitamin B2 in plants. Physiol. Plant. 126, 304-318 (2006).
Fischer, M. & Bacher, A. Biosynthesis of vitamin B2: structure and mechanism of riboflavin synthase. Arch. Biochem. Biophys. 474, 252-265 (2008).
Fischer, M. & Bacher, A. Riboflavin biosynthesis, p. 3-36. In Mander, L. & Liu, H.W. (eds.). Comprehensive natural products. II. Chemistry and biology, vol. 7. Cofactors (Elsevier, Philadelphia, PA. 2010).
Bracher, A., Eberhardt, D., Fischer, M., Kis, K. & Richter, G. Biosynthesis of vitamin B2 (riboflavin). Annu. Rev. Nutr. 20, 153-167 (2000).
Bracher, A., Schramek, N. & Bacher, A. Biosynthesis of pteridines. Stopped-flow kinetic analysis of GTP cyclohydrolase I. Biochemistry 40(26), 7896-7902 (2001).
Schramek, N.A. et al. Reaction mechanism of GTP cyclohydrolase I: single turnover experiments using a kinetically competent reaction intermediate. Mol. Biol. 316(3), 829-837 (2002).
Richter, G. et al. Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis. J. Bacteriol. 179, 2022-2028 (1997).
Perkins, J. B. et al. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J. Ind. Microbiol. Biotechnol. 22, 8-18 (1999).
Logvinenko, E.M., Shavlovskii, G.M., Zakalskii, A.E. & Zakhodylo, I.V. Biosynthesis of 6,7-dimethyl-8-ribityllumazine in the extracts of the yeast Pichia guilliermondii. Biokhimiia 47, 931- 936 (1982).
Herz, S., Eberhardt, S. & Bacher, A. Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2- butanone 4-phosphate synthase. Phytochemistry 53, 723-731 (2000).
Graupner, M., Xu, H. & White, R.H. The pyrimidine nucleotide reductase step in riboflavin and F420 biosynthesis in Archaea proceeds by the eukaryotic route to riboflavin. J. Bacteriol. 184, 1952-1957 (2002).
Fischer, M. et al. Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in Archaea. J. Mol. Biol. 343 (1), 267-278 (2004).
Ramsperger, A. et al. Crystal structure of an archaeal pentameric riboflavin synthase in complex with a substrate analog inhibitor: stereochemical implications. J. Biol. Chem. 281, 1224-1232 (2006).
Mack, M., van Loon, A.P. & Hohmann, H.P. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. J. Bacteriol. 180(4), 950-955 (1998).
Manstein, D.J. & Pai, E.F. Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes. J. Biol. Chem. 261, 16169-16173 (1986).
Nakagawa, S. et al. Nucleotide sequence of the FAD synthetase gene from Corynebacterium ammoniagenes and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 59, 694-702 (1995).
Frago, S., Martínez-Júlvez, M., Serrano, A. & Medina, M. Structural analysis of FAD synthetase from Corynebacterium ammoniagenes. BMC Microbiol. 8, 160-176 (2008).
Frago, S.,Velázquez-Campoy, A. & Medina, M. The puzzle of ligand binding to Corynebacterium ammoniagenes FAD synthetase. J. Biol. Chem. 284, 6610-6619 (2009).
Huerta, C., Borek, D., Machius, M., Grishin, N.V. & Zhang, H. Structure and mechanism of a eukaryotic FMN adenylyltransferase. J. Mol. Biol. 389, 388-400 (2009).
Rodionov, D.A. et al. A novel class of modular transporters for vitamins in prokaryotes. J. Bacteriol. 191, 42-51 (2009).
Henderson, G.B., Zevely, E.M. & Huennekens, G. M. Coupling of energy to folate transport in Lactobacillus casei. J. Bacteriol. 139, 552-559 (1979).
Foraker, A.B., Khantwal, C.M. & Swaan, P.W. Current perspectives in cellular uptake and trafficking of riboflavin. Adv. Drug Deliv. Rev. 55, 1467-1483 (2003).