2012, Número 2
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2012; 15 (2)
La mitocondria como fábrica de cofactores: biosíntesis de grupo hemo, centros Fe-S y nucleótidos de flavina (FMN/FAD)
Villavicencio-Queijeiro A
Idioma: Español
Referencias bibliográficas: 85
Paginas: 116-132
Archivo PDF: 540.75 Kb.
RESUMEN
Los cofactores hemo, centros Fe-S y los nucleótidos de flavina (FMN y FAD) son esenciales para muchos
organismos, existen un gran número de proteínas que dependen de ellos para llevar a cabo sus funciones
biológicas. Estos cofactores han sido reconocidos como esenciales para las reacciones de óxido-reducción,
pero también están involucrados en otros procesos celulares como la catálisis química, la regulación, la
señalización y la detección de señales intra y extra celulares. Diversos grupos de investigación han
contribuido al establecimiento de las rutas bioquímicas por las que se sintetizan estos cofactores, así como
a la forma en que se transportan y regulan en los diferentes organismos. Todo este conocimiento ha permitido
asociar algunas enfermedades con defectos metabólicos en estas rutas de biosíntesis, así como plantear nuevas
estrategias terapéuticas y algunas aplicaciones biotecnológicas.
REFERENCIAS (EN ESTE ARTÍCULO)
Sassa, S. & Nagai, T. The role of heme in gene expression. Int. J. Hematol. 63, 167-178 (1996).
Tang, X.D., Xu, R., Reynolds, M.F., Garcia, M.L., Heinemann, S.H. & Hoshi, T. Haem can bind to and inhibit mammalian calciumdependent Slo1 BK channels. Nature 425, 531-535 (2003).
Imaizumi, S., Kay, A. & Schroeder, J.I. Circadian rhythms. Daily watch on metabolism. Science 318, 1730-1731 (2007).
Chernova, T., Smith, A.G. & Lloyd Raven, E. The regulatory role of heme in neurons. Metallomics 3(10), 955-962 (2011).
Hardison, R.C. A brief history of hemoglobins: Plant, animal, protist, and bacterial. Proc. Nat. Acad. Sci. USA 93, 5675-5679 (1996).
Franken, A.C. et al. Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl. Microbiol. Biotechnol. 91(3), 447-460 (2011).
Hoffman, M., Góra, M. & Rytka, J. Identification of rate-limiting steps in yeast heme biosynthesis. Biochem. Biophys. Res. Commun. 310(4), 1247-1253 (2003).
Zagorec, M. et al. Isolation, sequence, and regulation by oxygen of the yeast HEM13 gene coding for coproporphyrinogen oxidase. J. Biol. Chem. 263(20), 9718-9724 (1998).
Dailey, T.A. & Dailey, H.A. Identification of [2Fe–2S] clusters in microbial ferrochelatases. J. Bacterial. 184(9), 2460-2464 (2002).
Bermúdez Moretti, M., Correa García, S & Batlle, A. Porphyrin biosynthesis intermediates are not regulating -aminolevulinic acid transport in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 272(3), 946-950 (2000).
Morgan, E.H. Transferrin biochemistry, physiology and clinical significance. Mol. Aspects. Med. 4, 1-23 (1981).
Goya, N., Miyazalo, S., Kodate, S. & Ushino, E. A family of congenital atransferrinemia. Blood 40, 239-245 (1972).
Hamza, I. Intracellular trafficking of porphyrins. ACS Chem. Biol. 1(10), 627-629 (2006).
Tsuchida, M., Emi, Y., Kida, Y. & Sakaguchi, M. Human ABC transporter isoform B6 (ABCB6) localizes primarily in the Golgi apparatus. Biochem. Biophys. Res. Commun. 369(2), 369-375 (2008).
Krishnamurthy, P.C. et al. Identification of a mammalian mitochondrial porphyrin transporter. Nature 443, 586-589 (2006).
Keng, T. & Guarente, L. Constitutive expression of the yeast HEM1 gene is actually a composite of activation and repression. Proc. Natl. Acad. Sci. USA 84(24), 9113-9117 (1987).
Leustek, T. et al. Siroheme biosynthesis in higher plants. Analysis of an S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase from Arabidopsis thaliana. J. Biol. Chem. 272(5), 2744-2752 (1997).
Kasting, J.F. & Howard, M.T. Atmospheric composition and climate on the early Earth. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361, 1733-1741 (2006).
Beinert, H., Holm, R.H. & Münck, E. Iron-sulfur clusters: nature’s modular, multipurpose structures. Science277, 653-659 (1997).
Meyer, J. Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. J. Biol. Inorg. Chem. 13, 157-170 (2008).
Bandyopadhyay, S., Chandramouli, K. & Johnson, M.K. Ironsulfur cluster biosynthesis. Biochem. Soc. Trans. 36, 1112- 1119 (2008).
Fontecave, M. & Ollagnier-de-Choudens, S. Iron-sulfur cluster biosynthesis in bacteria: mechanisms of cluster assembly and transfer. Arch. Biochem. Biophys. 474, 226-237 (2008).
Lill, R. & Mühlenhoff, U. Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu. Rev. Cell Dev. Biol. 22, 457-486 (2006).
Lill, R. & Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 77, 669-700 (2008).
Lill, R. Function and biogenesis of iron-sulphur proteins. Nature460 (7257), 831-838 (2009).
Zheng, L., Cash, V.L., Flint, D.H. & Dean, D.R. Assembly of ironsulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J. Biol. Chem. 273, 13264- 13272 (1998).
Schilke, B., Voisine, C., Beinert, H. & Craig, E. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 96, 10206-10211 (1999).
Yuvaniyama, P., Agar, J.N., Cash, V.L., Johnson, M.K. & Dean, D.R. NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc. Natl. Acad. Sci. USA 97, 599- 604 (2000).
Kaiser, J.T. et al. Crystal structure of a NifS-like protein from Thermotoga maritima: implications for iron-sulfur cluster assembly. J. Mol. Biol. 297, 451-464 (2000).
Cupp-Vickery, J.R., Urbina, H. & Vickery, L.E. Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. J. Mol. Biol. 330, 1049-1059 (2003).
Gerber, J., Mühlenhoff, U. & Lill, R. An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep. 4, 906-911 (2003).
Bencze, K.Z. et al. The structure and function of frataxin. Crit. Rev. Biochem. Mol. Biol. 41, 269-291 (2006).
Mühlenhoff, U., Gerber, J., Richhardt, N. & Lill, R. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J. 22, 4815-4825 (2003).
Gelling, C., Dawes, I.W., Richhardt, N., Lill, R. & Mühlenhoff, U. Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol. Cell. Biol. 28, 1851-1861 (2008).
Loiseau, L. et al. ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 104, 13626–13631 (2007).
Takahashi, Y. & Tokumoto, U. A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J. Biol. Chem. 277, 28380-28383 (2002).
Tokumoto, U., Kitamura, S., Fukuyama, K. & Takahashi, Y. Interchangeability and distinct properties of bacterial Fe-S cluster assembly systems: functional replacement of the isc and suf operons in Escherichia coli with the nifSU-like operon from Helicobacter pylori. J. Biochem. 136, 199-209 (2004).
Ayala-Castro, C., Saini, A. & Outten, F. W. Fe-S cluster assembly pathways in bacteria. Microbiol. Mol. Biol. Rev. 72, 110-125 (2008).
Outten, F.W., Wood, M.J., Muñoz, F.M. & Storz, G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe- S cluster assembly in E. coli. J. Biol. Chem. 278, 45713-45719 (2003).
Loiseau, L., Ollagnier-de-Choudens, S., Nachin, L., Fontecave, M. & Barras, F. Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J. Biol. Chem. 278, 38352-38359 (2003).
Xu, X.M. & Moller, S.G. Iron-sulfur cluster biogenesis systems and their crosstalk. Chem. Bio. Chem. 9, 2355-2362 (2008).
Rouault, T.A. & Tong, W.H. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nature Rev. Mol. Cell Biol. 6, 345-351 (2005).
Rouault, T.A. & Tong, W.H. Iron-sulfur cluster biogenesis and human disease. Trends Genet. 24, 398-407 (2008).
Kispal, G., Csere, P., Prohl, C. & Lill, R. The mitochondrial proteins Atm1p and Nfs1p are required for biogenesis of cytosolic Fe/ S proteins. EMBO J. 18, 3981-3989 (1999).
Roy, A., Solodovnikova, N., Nicholson, T., Antholine, W. & Walden, W.E. A novel eukaryotic factor for cytosolic Fe-S cluster assembly. EMBO J. 22, 4826-4835 (2003).
Rudolf, J., Makrantoni, V., Ingledew, W.J., Stark, M.J. & White, M.F. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol. Cell. 23, 801-808 (2006).
Kispal, G. et al. Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. EMBO J. 24, 589-598 (2005).
Tovar, J. et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature426, 172-176 (2003).
Goldberg, A.V. et al. Localization and functionality of microsporidian iron–sulphur cluster assembly proteins. Nature 452, 624-628 (2008).
De Colibus, L. & Mattevi, A. New frontiers in structural flavoenzymology. Curr. Opin. Struct. Biol.16, 722-728 (2006).
Haupt, W. Chloroplast movement: from phenomenology to molecular biology. Prog. Bot. 60, 3-35 (1999).
Briggs, W.R. & Christie, J.M. Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7, 204-210 (2002).
Drepper, T. et al. Reporter proteins for in vivo fluorescence without oxygen. Nat. Biotechnol. 25, 443-445 (2007).
Tielker, D., Eichhof, I., Jaeger, K.E., Ernst, J.F. Flavin mononucleotide-based fluorescent protein as an oxygenindependent reporter in Candida albicans and Saccharomyces cerevisiae. Eukaryot. Cell. 8, 913-915 (2009).
Fraga, A.A. & Reddy, C.A. Nutritional requirements of Corynebacterium pyogenes. J. Clin. Microbiol. 16, 334-340 (1982).
Siddiqi, R. & Khan, M.A. Vitamin and nitrogen base requirements for Listeria monocytogenes and haemolysin production. Zentralbl. Bakteriol. Mikrobiol. Hyg. A. 253, 225-235 (1982).
Terrade, N. & Mira de Orduña, R. Determination of the essential nutrient requirements of wine-related bacteria from the genera Oenococcus and Lactobacillus. Int. J. Food Microbiol. 133, 8- 13 (2009).
Stahmann, K.P., Revuelta, J.L. & Seulberger, H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol. 53(5), 509-516 (2000).
Katagiri, H., Yamada, H. & Imai, K. Biosynthesis of flavin coenzymes by microorganisms. II. Enzymatic synthesis of flavin adenine dinucleotide in Escherichia coli. J. Vitaminol. 5, 307-311 (1959).
Kearney, E.B. & Englard, S. The enzymatic phosphorylation of riboflavin. J. Biol. Chem. 193, 821-834 (1951).
Kobayashi, T. & Suzue, T. Flavin adenine dinucleotide-synthesizing enzyme in Eremothecium ashbyii. J. Vitaminol. 7, 42-47 (1961).
Schrecker, A.W. & Kornberg, A. Reversible enzymatic synthesis of flavin-adenine dinucleotide. J. Biol. Chem. 182, 795-803 (1950).
Fischer, M. & Bacher, A. Biosynthesis of flavocoenzymes. Nat. Prod. Rep. 22, 324-350 (2005).
Fischer, M. & Bacher, A. Biosynthesis of vitamin B2 in plants. Physiol. Plant. 126, 304-318 (2006).
Fischer, M. & Bacher, A. Biosynthesis of vitamin B2: structure and mechanism of riboflavin synthase. Arch. Biochem. Biophys. 474, 252-265 (2008).
Fischer, M. & Bacher, A. Riboflavin biosynthesis, p. 3-36. In Mander, L. & Liu, H.W. (eds.). Comprehensive natural products. II. Chemistry and biology, vol. 7. Cofactors (Elsevier, Philadelphia, PA. 2010).
Bracher, A., Eberhardt, D., Fischer, M., Kis, K. & Richter, G. Biosynthesis of vitamin B2 (riboflavin). Annu. Rev. Nutr. 20, 153-167 (2000).
Bracher, A., Schramek, N. & Bacher, A. Biosynthesis of pteridines. Stopped-flow kinetic analysis of GTP cyclohydrolase I. Biochemistry 40(26), 7896-7902 (2001).
Schramek, N.A. et al. Reaction mechanism of GTP cyclohydrolase I: single turnover experiments using a kinetically competent reaction intermediate. Mol. Biol. 316(3), 829-837 (2002).
Richter, G. et al. Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis. J. Bacteriol. 179, 2022-2028 (1997).
Perkins, J. B. et al. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J. Ind. Microbiol. Biotechnol. 22, 8-18 (1999).
Logvinenko, E.M., Shavlovskii, G.M., Zakalskii, A.E. & Zakhodylo, I.V. Biosynthesis of 6,7-dimethyl-8-ribityllumazine in the extracts of the yeast Pichia guilliermondii. Biokhimiia 47, 931- 936 (1982).
Herz, S., Eberhardt, S. & Bacher, A. Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2- butanone 4-phosphate synthase. Phytochemistry 53, 723-731 (2000).
Graupner, M., Xu, H. & White, R.H. The pyrimidine nucleotide reductase step in riboflavin and F420 biosynthesis in Archaea proceeds by the eukaryotic route to riboflavin. J. Bacteriol. 184, 1952-1957 (2002).
Fischer, M. et al. Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in Archaea. J. Mol. Biol. 343 (1), 267-278 (2004).
Ramsperger, A. et al. Crystal structure of an archaeal pentameric riboflavin synthase in complex with a substrate analog inhibitor: stereochemical implications. J. Biol. Chem. 281, 1224-1232 (2006).
Mack, M., van Loon, A.P. & Hohmann, H.P. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. J. Bacteriol. 180(4), 950-955 (1998).
Manstein, D.J. & Pai, E.F. Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes. J. Biol. Chem. 261, 16169-16173 (1986).
Nakagawa, S. et al. Nucleotide sequence of the FAD synthetase gene from Corynebacterium ammoniagenes and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 59, 694-702 (1995).
Frago, S., Martínez-Júlvez, M., Serrano, A. & Medina, M. Structural analysis of FAD synthetase from Corynebacterium ammoniagenes. BMC Microbiol. 8, 160-176 (2008).
Frago, S.,Velázquez-Campoy, A. & Medina, M. The puzzle of ligand binding to Corynebacterium ammoniagenes FAD synthetase. J. Biol. Chem. 284, 6610-6619 (2009).
Huerta, C., Borek, D., Machius, M., Grishin, N.V. & Zhang, H. Structure and mechanism of a eukaryotic FMN adenylyltransferase. J. Mol. Biol. 389, 388-400 (2009).
Rodionov, D.A. et al. A novel class of modular transporters for vitamins in prokaryotes. J. Bacteriol. 191, 42-51 (2009).
Henderson, G.B., Zevely, E.M. & Huennekens, G. M. Coupling of energy to folate transport in Lactobacillus casei. J. Bacteriol. 139, 552-559 (1979).
Foraker, A.B., Khantwal, C.M. & Swaan, P.W. Current perspectives in cellular uptake and trafficking of riboflavin. Adv. Drug Deliv. Rev. 55, 1467-1483 (2003).