2012, Number 2
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2012; 15 (2)
Estructura y función de la ATP sintasa de las arqueas aeróbicas
Miranda-Astudillo HV
Language: Spanish
References: 88
Page: 104-115
PDF size: 486.14 Kb.
ABSTRACT
Ever since Archaea were discovered, their ability to thrive in extreme environments has attracted much
attention. Over the years, archaea have gone from microbial extremophilic oddities to organisms of universal
importance and have been used to elucidate fundamental biological questions. The phylogeny of the Archaea
domain is in constant evolution; to this day it is composed by five main branches:
Crenarchaeota, Euryarchaeota,
Thaumarchaeota, Korarchaeota and Nanoarchaeota. In the present study, we list the main structural features of
the respiratory complexes of the most studied genera of aerobic archaea. We present a morphological
comparison of the ATP synthase of these organisms with the rest of the family of rotary ATPases (F- and V-ATPases)
as well as a topological analysis of this enzymatic complex (A
1A
o-ATP synthase) based on the function of each
of the subunits that comprise it.
REFERENCES
Zillig, W. Comparative biochemistry of Archaea and Bacteria. Curr. Opin. Genet Dev. 1, 544-551 (1991).
Woese, C.R., Kandler, O. & Wheelis, M.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 4576-4579 (1990).
Jarrell, K.F. et al. Major players on the microbial stage: why archaea are important. Microbiology 157, 919-936 (2011).
Gupta, R.S. & Shami, A. Molecular signatures for the Crenarchaeota and the Thaumarchaeota. Antonie van Leeuwenhoek 99, 133- 157 (2011).
Lewalter, K. & Müller, V. Bioenergetics of archaea: ancient energy conserving mechanisms developed in the early history of life. Biochim. Biophys. Acta 1757, 437-445 (2006).
Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 2, 63-67 (2002).
Barns, S.M., Delwiche, C.F., Palmer, J.D. & Pace, N.R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sci. USA 93, 9188-9193 (1996).
Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245-252 (2008).
Schäfer, G., Engelhard, M. & Müller, V. Bioenergetics of the Archaea. Microbiol. Mol. Biol. Rev. 63, 570-620 (1999).
Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 4784, 144-148 (1961).
Deppenmeier, U. Redox-driven proton translocation in methanogenic Archaea. Cell Mol. Life Sci. 59, 1513-1533 (2002).
Müller, V. et al. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J. Mol. Microbiol. Biotechnol. 10, 167-180 (2005).
Iwasaki, T., Matsuura, K. & Oshima, T. Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. strain 7. I. The archaeal terminal oxidase supercomplex is a functional fusion of respiratory complexes III and IV with no c-type cytochromes. J. Biol. Chem. 270, 30881-30892 (1995).
Schäfer, G., Purschke, W.G., Gleissner, M. & Schmidt, C.L. Respiratory chains of archaea and extremophiles. Biochim. Biophys. Acta 1275, 16-20 (1996).
Pereira, M.M. et al. Respiratory chains from aerobic thermophilic prokaryotes. J. Bioenerg. Biomembr. 36, 93-105 (2004).
Brito, J.A., Bandeiras, T.M., Teixeira, M., Vonrhein, C. & Archer, M. Crystallisation and preliminary structure determination of a NADH: quinone oxidoreductase from the extremophile Acidianus ambivalens. Biochim. Biophys. Acta 1764, 842-845 (2006).
Gomes, C.M., Bandeiras, T.M. & Teixeira, M. A new type-II NADH dehydrogenase from the archaeon Acidianus ambivalens: characterization and in vitro reconstitution of the respiratory chain. J. Bioenerg. Biomembr. 33, 1-8 (2001).
Gomes, C.M. et al. The unusual iron sulfur composition of the Acidianus ambivalens succinate dehydrogenase complex. Biochim. Biophys. Acta 1411, 134-141 (1999).
Lemos, R.S., Gomes, C.M. & Teixeira, M. Acidianus ambivalens Complex II typifies a novel family of succinate dehydrogenases. Biochem. Biophys. Res. Commun. 281, 141-150 (2001).
Bandeiras, T.M. et al. The cytochrome ba complex from the thermoacidophilic crenarchaeote Acidianus ambivalens is an analog of bc1 complexes. Biochim. Biophys. Acta 1787, 37-45 (2009).
Gilderson, G. et al. Kinetics of electron and proton transfer during O2 reduction in cytochrome aa3 from A. ambivalens: an enzyme lacking Glu(I-286). Biochim. Biophys. Acta 1503, 261-270 (2001).
Kabashima, Y. & Sakamoto, J. Purification and biochemical properties of a cytochrome bc complex from the aerobic hyperthermophilic archaeon Aeropyrum pernix. BMC Microbiology 11, 52 (2011).
Ishikawa, R. et al. Aeropyrum pernix K1, a strictly aerobic and hyperthermophilic archaeon, has two terminal oxidases, cytochrome ba3 and cytochrome aa3. Arch. Microbiol. 179, 42- 49 (2002).
Sreeramulu, K., Schmidt, C.L., Schäfer, G. & Anemüller, S. Studies of the electron transport chain of the euryarcheon Halobacterium salinarum: indications for a type II NADH dehydrogenase and a complex III analog. J. Bioenerg. Biomembr. 30, 443-453 (1998).
González, O. et al. Systems analysis of bioenergetics and growth of the extreme halophile Halobacterium salinarum. PLoS Comput. Biol. 5, e1000332 (2009).
Nunoura, T., Sako, Y., Wakagi, T. & Uchida, A. Regulation of the aerobic respiratory chain in the facultatively aerobic and hyperthermophilic archaeon Pyrobaculum oguniense. Microbiology 149, 673-688 (2003).
Nunoura, T., Sako, Y., Wakagi, T. & Uchida, A. Cytochrome aa3 in facultatively aerobic and hyperthermophilic archaeon Pyrobaculum oguniense. Can. J. Microbiol. 51, 621-627 (2005).
Bandeiras, T.M., Salgueiro, C.A., Huber, H., Gomes, C.M. & Teixeira, M. The respiratory chain of the thermophilic archaeon Sulfolobus metallicus: studies on the type-II NADH dehydrogenase. Biochim. Biophys. Acta. 1557, 13-19 (2003).
Hamann, N. et al. The CCG-domain-containing subunit SdhE of succinate: quinone oxidoreductase from Sulfolobus solfataricus P2 binds a [4Fe-4S] cluster. J. Biol. Inorg. Chem. 14, 457-470 (2009).
Auernik, K.S. & Kelly, R.M. Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes. Appl. Environ. Microbiol. 74, 7723-7732 (2008).
Kish-Trier, E., Briere, L.K., Dunn, S.D. & Wilkens, S. The stator complex of the A1A0-ATP synthase-structural characterization of the E and H subunits. J. Mol. Biol. 375, 673-685 (2008).
Kish-Trier, E. & Wilkens, S. Domain architecture of the stator complex of the A1A0-ATP synthase from Thermoplasma acidophilum. J. Biol. Chem. 284, 12031-12040 (2009).
Kish-Trier, E. & Wilkens, S. Interaction of the Thermoplasma acidophilum A1A0-ATP synthase peripheral stalk with the catalytic domain. FEBS Letters 583, 3121-3126 (2009).
Cross, R.L. & Müller, V. The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio. FEBS Letters 576, 1-4 (2004).
Deppenmeier, U., Müller, V. & Gottschalk, G. Pathways of energy conservation in methanogenic archaea. Arch. Microbiol. 165, 149-163 (1996).
Bickel-Sandkotter, S., Gartner, W. & Dane, M. Conversion of energy in halobacteria: ATP synthesis and phototaxis. Arch. Microbiol. 166, 1-11 (1996).
Adams, M.W. The biochemical diversity of life near and above 100°C in marine environments. J. Appl. Microbiol. Syn. Sup.85, 108s-117s (1998).
Cross, R.L. & Taiz, L. Gene duplication as a means for altering H+/ ATP ratios during the evolution of FoF1 ATPases and synthases. FEBS Letters 259, 227-229 (1990).
Muench, S.P., Trinick, J. & Harrison, M.A. Structural divergence of the rotary ATPases. Q. Rev. Biophys. 44, 311-356 (2011).
Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl. Acad. Sci. USA 86, 9355-9359 (1989).
Stock, D., Gibbons, C., Arechaga, I., Leslie, A.G. & Walker, J.E. The rotary mechanism of ATP synthase. Curr. Opin. Struct. Biol. 10, 672-679 (2000).
Grüber, G., Wieczorek, H., Harvey, W.R. & Müller, V. Structurefunction relationships of A-, F- and V-ATPases. J. Exp. Biol. 204, 2597-2605 (2001).
Nishi, T. & Forgac, M. The vacuolar H+-ATPases—nature’s most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3, 94-103 (2002).
Wieczorek, H. et al. Structure and regulation of insect plasma membrane H+ V-ATPase. J. Exp. Biol. 203, 127-135 (2000).
Müller, V., Ruppert, C. & Lemker, T. Structure and function of the A1A0-ATPases from methanogenic Archaea. J. Bioenerg. Biomembr. 31, 15-27 (1999).
Shao, E., Nishi, T., Kawasaki-Nishi, S. & Forgac, M. Mutational analysis of the non-homologous region of subunit A of the yeast V-ATPase. J. Biol. Chem. 278, 12985-12991 (2003).
Coskun, U. et al. Structure and subunit arrangement of the A-type ATP synthase complex from the archaeon Methanococcus jannaschii visualized by electron microscopy. J. Mol. Biol.279, 38644-38648 (2004).
Vonck, J., Pisa, K.Y., Morgner, N., Brutschy, B. & Müller, V. Threedimensional structure of A1A0 ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus by electron microscopy. J. Biol. Chem. 284, 10110-10119 (2009).
Muench, S.P. et al. Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity. J. Mol. Biol. 386, 989-999 (2009).
Walker, J.E. & Kane-Dickson, V. The peripheral stalk of the mitochondrial ATP synthase. Biochim. Biophys. Acta 1757, 286-296 (2006).
Cano-Estrada, A. & González-Halphen, D. F1Fo-ATP sintasa y sus diferencias estructurales. REB 30, 98-108 (2011).
Stewart, A.G., Lee, L.K., Donohoe, M., Chaston, J.J. & Stock, D. The dynamic stator stalk of rotary ATPases. Nat. Commun. 3, 687 (2012).
Schäfer, I.B. et al. Crystal structure of the archaeal A1Ao ATP synthase subunit B from Methanosarcina mazei Gö1: Implications of nucleotide-binding differences in the major A1Ao subunits A and B. J. Mol. Biol. 358, 725-740 (2006).
Boyer, P.D. A perspective of the binding change mechanism for ATP synthesis. FASEB J. 3, 2164-2178 (1989).
Maegawa, Y. et al. Structure of the catalytic nucleotide-binding subunit A of A-type ATP synthase from Pyrococcus horikoshii reveals a novel domain related to the peripheral stalk. Acta Crystallogr. D. Biol. Crystallogr. 62, 483-488 (2006).
Maher, M.J. et al. Crystal structure of A3B3 complex of V-ATPase from Thermus thermophilus. EMBO Journal 28, 3771-3779 (2009).
Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621-628 (1994).
Bernal, R.A. & Stock, D. Three-dimensional structure of the intact Thermus thermophilus H+-ATPase/synthase by electron microscopy. Structure 12, 1789-1798 (2004).
Numoto, N., Hasegawa, Y., Takeda, K. & Miki, K. Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase. EMBO Reports 10, 1228- 1234 (2009).
Gibbons, C., Montgomery, M.G., Leslie, A.G. & Walker, J.E. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nature Structural Biology 7, 1055-1061 (2000).
Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F1-ATPase. Nature 386, 299-302 (1997).
Imamura, H. et al. Evidence for rotation of V1-ATPase. Proc. Natl. Acad. Sci. USA 100, 2312-2315 (2003).
Raghunathan, D., Gayen, S., Grüber, G. & Verma, C.S. Crosstalk along the stalk: dynamics of the interaction of subunits B and F in the A1AOATP synthase of Methanosarcina mazei Gö1. Biochemistry 49, 4181-4190 (2010).
Raghunathan, D. et al. Subunit F modulates ATP binding and migration in the nucleotide-binding subunit B of the A1AOATP synthase of Methanosarcina mazei Gö1. J. Bioenerg. Biomembr. 44, 213-224 (2012).
Ihara, K., Watanabe, S., Sugimura, K., Katagiri, I. & Mukohata, Y. Identification of proteolipid from an extremely halophilic archaeon Halobacterium salinarum as an N,N’-dicyclohexylcarbodiimide binding subunit of ATP synthase. Arch. Biochem. Biophys. 341, 267-272 (1997).
Wilms, R. et al. Subunit structure and organization of the genes of the A1A0 ATPase from the Archaeon Methanosarcina mazei Gö1. J. Biol. Chem. 271, 18843-18852 (1996).
Inatomi, K., Maeda, M. & Futai, M. Dicyclohexylcarbodiimidebinding protein is a subunit of the Methanosarcina barkeri ATPase complex. Biochem. Biophys. Res. Commun. 162, 1585-1590 (1989).
Müller, V., Lingl, A., Lewalter, K. & Fritz, M. ATP synthases with novel rotor subunits: new insights into structure, function and evolution of ATPases. J. Bioenerg. Biomembr. 37, 455-460 (2006).
Ruppert, C., Wimmers, S., Lemker, T. & Müller, V. The A1A0 ATPase from Methanosarcina mazei: cloning of the 5' end of the aha operon encoding the membrane domain and expression of the proteolipid in a membrane-bound form in Escherichia coli. J. Bacteriol. 180, 3448-3452 (1998).
Ruppert, C. et al. The proteolipid of the A1A0 ATP synthase from Methanococcus jannaschii has six predicted transmembrane helices but only two proton-translocating carboxyl groups. J. Biol. Chem. 274, 25281-25284 (1999).
Lolkema, J.S. & Boekema, E.J. The A-type ATP synthase subunit K of Methanopyrus kandleri is deduced from its sequence to form a monomeric rotor comprising 13 hairpin domains. FEBS Lettes 543, 47-50 (2003).
Zhang, Z. et al. Structure of the yeast vacuolar ATPase. J. Biol. Chem. 283, 35983-35995 (2008).
Dickson, V.K., Silvester, J.A., Fearnley, I.M., Leslie, A.G. & Walker, J.E. On the structure of the stator of the mitochondrial ATP synthase. EMBO Journal 25, 2911-2918 (2006).
Rees, D.M., Leslie, A.G. & Walker, J.E. The structure of the membrane extrinsic region of bovine ATP synthase. Proc. Natl. Acad. Sci. USA 106, 21597-21601 (2009).
Lee, L.K., Stewart, A.G., Donohoe, M., Bernal, R.A. & Stock, D. The structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase. Nature Structural Biology 17, 373-378 (2010).
Grüber, G. & Marshansky, V. New insights into structure-function relationships between archeal ATP synthase (A1A0) and vacuolar type ATPase (V1V0). BioEssays 30, 1096-1109 (2008).
Müller, V. & Grüber, G. ATP synthases: structure, function and evolution of unique energy converters. Cell Mol. Life Sci. 60, 474-494 (2003).
Weber, J. ATP synthase–the structure of the stator stalk. Trends Biochem. Sci. 32, 53-56 (2007).
Del Rizzo, P.A., Bi, Y., Dunn, S.D. & Shilton, B.H. The “second stalk” of Escherichia coli ATP synthase: structure of the isolated dimerization domain. Biochemistry 41, 6875-6884 (2002).
Del Rizzo, P.A., Bi, Y. & Dunn, S.D. ATP synthase b subunit dimerization domain: a right-handed coiled coil with offset helices. J. Mol. Biol. 364, 735-746 (2006).
Wise, J.G. & Vogel, P.D. Subunit b-dimer of the Escherichia coli ATP synthase can form left-handed coiled-coils. Biophysical Journal 94, 5040-5052 (2008).
Wise, J.G. & Vogel, P.D. Accommodating discontinuities in dimeric left-handed coiled coils in ATP synthase external stalks. Biophysical Journal 96, 2823-2831 (2009).
Deppenmeier, U. & Müller, V. Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Results Probl. Cell Differ. 45,123-152 (2007).
Becher, B. & Müller, V. ΔμNa+ drives the synthesis of ATP via an ΔμNa+-translocating F1Fo-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1. J. Bacteriol. 176, 2543-2550 (1994).
McMillan, D.G. et al. A1Ao-ATP synthase of Methanobrevibacter ruminantium couples sodium ions for ATP synthesis under physiological conditions. J. Biol. Chem. 286, 39882-39892 (2011).
Saum, R., Schlegel, K., Meyer, B. & Müller, V. The F1FO ATP synthase genes in Methanosarcina acetivorans are dispensable for growth and ATP synthesis. FEMS Microbiol. Lett. 300, 230-236 (2009).
Schlegel, K., Leone, V., Faraldo-Gómez, J.D. & Müller, V. Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proc. Natl. Acad. Sci. USA 109, 947- 952 (2012).
de Champdoré, M., Staiano, M., Rossi, M. & D’Auria, S. Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J. R. Soc. Interface 4, 183- 191 (2007).