2012, Número 2
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2012; 15 (2)
La producción de especies reactivas de oxígeno (EROs) en las mitocondrias de Saccharomyces cerevisiae
Macedo-Márquez A
Idioma: Español
Referencias bibliográficas: 43
Paginas: 97-103
Archivo PDF: 365.26 Kb.
RESUMEN
La mitocondria es el principal productor de especies reactivas de oxígeno durante los procesos normales
oxidativos del metabolismo, principalmente a través de las reacciones de óxido-reducción que ocurren en los
complejos de transferencia de electrones y que tienen al oxígeno como el último aceptor de electrones. De
particular interés,
Saccharomyces cerevisiae no cuenta con el complejo l y en su lugar se encuentran tres
deshidrogenasas alternas; sin embargo, sí contiene los complejos clásicos ll, lll y lV. Los últimos dos complejos
(lll y lV) bombean protones al espacio intermembrana para generar un gradiente electroquímico, el cual es
utilizado por la ATP sintetasa para la formación de ATP.
Las deshidrogenasas alternas que se encuentran expuestas hacia el espacio intermembrana y el complejo lll,
son los componentes principales que generan los radicales superóxido. Para transformar el ión superóxido en
un compuesto menos nocivo, la mitocondria contiene enzimas encargadas de convertirlo en moléculas menos
reactivas.
REFERENCIAS (EN ESTE ARTÍCULO)
Bartozs, G. Reactive oxigen species: Destroyers or mesengers? Biochem. Pharmacol. 77, 1303-1315 (2009).
Halliwell, B. & Gutteridge, J.M.C. Free Radicals in Biology and Medicine (Oxford University Press, London, 1999).
Folch-Mallol, J.L., Garay-Arroyo, A., Lledías, F. & Covarrubias Robles, A.A. La respuesta al estrés en la levadura Saccharomyces cerevisiae. Rev. Latinoam. Microbiol. (1-2), 24-46 (2004).
Halliwell, B. & Gutteridge, J.M. Oxigen toxicity oxigen radicals, transition metals and disease. Biochem. J. 219, 1-14 (1984).
Herrero, E., Ros, J., Bellí, G. & Cabiscol, E. Redox control and oxidative stress in the yeast cells. Biochem. Biophys. Acta 1780(11), 1217-1235 (2008).
Kehrer, P.J. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 149, 43-50 (2000).
Czapski, G. & Goldstein, S. When do metal complexes protect the biological system from superoxide toxicity and when do they enhance it? Free Rad. Res. Comms. 1(3), 157-161 (1986).
Mailloux, J.R. & Harper, M.E. Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends in Endocrinology and Metabolism. En prensa (2012).
Bakker, M.B. et al. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25, 15-37 (2001).
Lemire, D.B. & Oyedotun, S.K. The Saccharomyces cerevisiae mitochondrial succinate:ubiquinone oxidoreductase. Biochem. Biophys. Acta. 1553, 102-116 (2002).
Clarke, F.C., Williams, W. & Teruya, H.H. Ubiquinone Biosynthesis in Saccharomyces cerevisiae. J. Biol. Chem. 266 (25), 16636- 16644 (1991).
Power, S.D., Lochrie, M.A., Severino, K.A., Patterson, T.E. & Poyton, R.O. The nuclear-coded subunits of yeast cytochrome c oxidase. J. Biol. Chem. 259(10), 6564-6570 (1984).
Grivennokova, V.G. & Vinogradov, A.D. Generation of superoxide by the mitochondrial complex I. Biochem. Biophys. Acta 1757, 553-561 (2006).
Hirst, J., King, M.S. & Pryde, K.R. The production of reactive oxygen species by complex I. Biochem. Soc. Trans. 36, 976-980 (2008).
Turrens, J.F. Superoxide production by the mitochondrial respiratory chain. Bioscience Reports 17(1), 3-8 (1997).
Fang, J. & Beattie, D.S. External alternative NADH deshidrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Free Radic. Biol. Med. 34(4), 478-488 (2003).
Carneiro, P., Duarte, M. & Videira, A. Disruption of alternative NAD(P)H dehidrogenases leads to decreased mitochondrial ROS in Neurospora crassa. Free Radical Biology and Medicine. 52, 402-409 (2012).
Trumpower, B.L. The protonmotive Q cicle. J. Biol. Chem. 265(20), 11409-11412 (1990).
Quinland, L.C., Gerencser, A.A., Treberg, R.J. & Brand, D.M. The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J. Biol. Chem. 286(36), 31361-31372 (2011).
Hamanaka, B.R. & Chandel, S.N. Mitochondrial reactive species regulate cellular signaling and dictate biological outcomes. Trends in Biochemical Sciences. 35, 505-513 (2010).
Boveris, A., Cadenas, E. & Stoppani, A.O.M. Role of ubiquinone in the generation of Hydrogen peroxide. Biochem. J. 156, 135- 144 (1976).
Turrens, J.F., Alexandre, A. & Lehninger, A.L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237(2), 408-414 (1985).
Nohl, H., Gille, L. & Staniek, K. Intracellular generation of reactive oxygen species by mitochondria. Biochem. Pharmacol. 69, 719-723 (2005).
Castello, R.P., David, S.P., McClure, T., Crook, Z. & Poyton, O.R. Mitochondrial citochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxigen sensing and hipoxic signaling in eucaryotes. Cell Metabolism 3(4), 277-287 (2006).
Bermingham-McDonogh, O., Gralla, E.B. & Valentine, S.J. The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: Cloning, sequencing, and biological activity. Proc. Natl. Acad. Sci. 85, 4789-4793 (1988).
Sturtz, A.L., Diekert, K., Jensen, T.L., Lill, R. & Culotta, C.V. A Fraction of Yeast Cu,Zn-Superoxide Dismutase and Its Metallochaperone, CCS, Localize to the Intermembrane Space of Mitochondria. J. Biol. Chem. 276(41), 38084-38089 ( 2001).
Han, D., Williams, E. & Cadenas, E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 353, 411-416 (2001).
Liu, X.F. et al. Yeast lacking superoxide dismutase. J. Biol. Chem. 267(26), 18298-18302 (1992).
Costa, V., Amorim, A.M., Reis, E., Quintanilha, A. & Moradas- Ferreira, P. Mitochondrial superoxide dismutase is essential for ethanol tolerante of Saccharomyces cerevisiae in the postdiauxi phase. Microbiology 143, 1649-1656 (1997).
Gralla, B.E. & Valentine, S.J. Null mutants of Saccharomyces cerevisiae Cu,Zn Superoxide dismutase: Characterization and spontaneous mutantion rates. J. Bacteriol. 173(18), 5918-5920 (1991).
Guidot, D.M., McCord, J.M., Wright, R.M. & Repine, J.E. Absence of Electron Transport (Rho° State) Restores Growth of a Manganese-Superoxide Dismutase-deficient Saccharomyces cerevisiae in Hyperoxia. J. Biol. Chem. 268(35), 26699-26703 (1993).
Marres, M.A.C. et al. Nucleotide sequence analysis of the nuclear gene coding for manganese superoxide dismutase of yeast mitochondria, a gene previously assumed to code for the Rieske iron-sulphur protein. Eur. J. Biochem. 147, 153-161 (1985).
van Loon, A.P., Pesold-Hurt, B. & Schatz, G. A yeast mutant lacking mitochondrial manganese–superoxide dismutase is hypersensitive to oxygen. Proc. Natl. Acad. Sci. USA 83(11), 3820-3824 (1986).
Fabrizio, P. et al. Sod2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163, 35-46 (2003).
Munhoz, D.C. & Soares Netto, L.E. Cytosolic Thioredoxin Peroxidase I and II Are Important Defenses of Yeast against Organic Hydroperoxide Insult. J. Biol. Chem. 279(34), 35219- 35227 (2004).
Pedrajas, R.J., Miranda-Vizuete, A., Javanmardy, N., Gustafsson, A.N. & Spyrou, G. Mitochondria of Saccharomyces cerevisiae Contain One-conserved Cysteine Type Peroxiredoxin with Thioredoxin Peroxidase Activity. J. Biol. Chem. 276(21), 16296-16301 (2000).
Park, G.S., Cha, M.K., Jeong, W. & Kim, I.H. Distinct Physiological Functions of Thiol Peroxidase Isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275(8), 5723-5732 (2000).
Hiltunen, K.J. et al. The biochemistry of peroxisomal ß-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews 27, 35-64 (2003).
Filipits, M., Simon, M.M., Rapatz, W., Hamilton, B. & Ruis, H. A Saccharomyces cerevisiae upstream activating sequence mediates activation of peroxisome proliferation by fatty acids. Gene 132, 49-55 ( 1993).
Petrova, Y.V., Drescher, D., Kujumdzieva, V.A. & Schmitt, J.M. Dual targeting of yeast catalase A to peroxisomes and mitochondia. Biochem. J. 380, 393-400 (2004).
Sohal, S.R., Mockett, J.R. & Orr, C.W. Mechanims of aging: an appraisal of the oxidative stress hypothesis. Free Radical Biology and Medicine 33(5), 575-586 (2002).
Rattan, S.I.S. Theories of biological aging: Genes, proteins and free radicals. Free Radical Research 40(12), 1230-1238 (2006).
Muller, L.F., Lustgarten, S.M., Jang, Y., Richarson, A. & Van Remmen, H. Trends in oxidative aging theories. Free Radical Biology 43, 477-503 (2007).