2007, Number 4
<< Back Next >>
Rev Invest Clin 2007; 59 (4)
Pregnancy, acquired immunity and parasitic diseases: main mechanisms associated to resistance or susceptibility
Vargas-Villavicencio JA, Morales-Montor J
Language: Spanish
References: 48
Page: 298-305
PDF size: 116.77 Kb.
ABSTRACT
During pregnancy in mammals, the endocrine system plays a protagonic role, characterized by variation of different hormonal serum levels, such as estradiol, progesterone and some gonadotrophic hormones. Furthermore, the immunological system also participates during pregnancy, self-regulation for to avoid not rejecting the fetus. The characteristic immunity during the pregnancy is the humoral type: which is characterized by an increase in the levels of the Th-2 type cytokines IL-4, IL-6, IL-10, concomitant to a diminution in the levels of IL-2, INF-γ, and TNF-α. The type of immunological response present during the pregnancy is mainly regulated by mechanisms associated to sexual hormones. This particular immunological response during the pregnancy, has individual importance if an infectious disease appears, since, depending on the parasite, a susceptibility or a resistance to the infection can exist. The proposed mechanisms to explain this resistance or susceptibility can be one of the following: 1) the hormones are influencing the immunological system of the host (by means of specific nuclear receptors); 2) the hormones acting directly on the parasite, preventing or promoting their reproduction and 3) a combination of both. These mechanisms support the idea of a complex immunoendocrine network (mediated by hormonal receptors, citokynes, antibodies) in host and parasite, interacting in a bidirectional way. The final outcome of this interaction is the death or survival of the host, or the parasite. In this review, we evaluate the information about the more frequent parasitic infections during pregnancy, and discuss the implied molecular mechanisms that affects the establishment, growth, reproduction or elimination of the parasite.
REFERENCES
Krishnan L, Guilbert LJ, Wegmann TG, Belosevic M, Mosmann TR. T helper 1 response against Leishmania major in pregnant C57BL/6 mice increases implantation failure and fetal resorptions. Correlation with increased IFN-gamma and TNF and reduced IL-10 production by placental cells. J Immunol 1996; 156(2): 653-62.
Loke YW, King A. Immunological aspects of human implantation. J Reprod Fertil Suppl 2000; 55(1): 83-90.
Critchley HO, Kelly RW, Brenner RM, Baird DT. The endocrinology of menstruation-a role for the immune system. Clin Endocrinol 2001; 55(6): 701-10.
Chantakru S, Wang WC, van den Heuvel M, Bashar S, Simpson A, Chen Q, Croy BA, Evans SS. Coordinate regulation of lymphocyte-endothelial interactions by pregnancy-associated hormones. J Immunol 2003; 171(8): 4011-9.
Thongngarm T, Jenkins JK, Ndebele K, McMurray RW. Estrogen and progesterone modulate monocyte cell cycle progression and apoptosis. Am J Reprod Immunol 2003; 49(3): 129-38.
Chaouat G, Ledee-Bataille N, Zourbas S, Ostojic S, Dubanchet S, Martal J, Frydman R. Cytokines, implantation and early abortion: re-examining the Th1/Th 2 paradigm leads to question the single pathway, single therapy concept. Am J Reprod Immunol 2003; 50(3): 177-86.
Galan A, O’connor JE, Valbuena D, Herrer R, Remohi J, Pampfer S, et al. The human blastocyst regulates endometrial epithelial apoptosis in embryonic adhesion. Biol Reprod 2001; 64(4): 1283.
Salamonsen LA, Nie G, Dimitriadis E, Robb L, Findlay JK. Genes involved in implantation. Reprod Fertil Dev 2001; 13(1): 41-9.
Ma WG, Song H, Das SK, Paria BC, Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci USA 2003; 100(5): 2963-8.
Besedovsky HO, Del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 1996; 17(1): 64-102.
Correale J, Arias M, Gilmore W. Steroid hormone regulation of cytokine secretion by proteolipid protein-specific CD4+ T cell clones isolated from multiple sclerosis patients and normal control subjects. J Immunol 1998; 161(7): 3365-74.
Giron-Gonzalez JA, Moral FJ, Elvira J, Garcia-Gil D, Guerrero F, Gavilan I, Escobar L. Consistent production of a higher TH1:TH2 cytokine ratio by stimulated T cells in men compared with women. Eur J Endocrinol 2000; 43(1): 31-6.
Falkenstein E. Multiple actions of steroid hormones a focus on rapid, nongenomic effects. Pharmacol Rev 2000; 52(4): 513-55.
Nalbandian G, Kovats S, Understanding sex biases in immunity: effects of estrogen on the differentiation and function of antigen-presenting cells. Immunol Res 2005; 31(2): 91-106.
Piccinni MP. T-cell cytokines in pregnancy. Am J Reprod Immunol 2002; 47(5): 289-94.
Lim KJ, Odukoya OA, Ajjan RA, Li TC, Weetman AP, Cooke ID. The role of T-helper cytokines in human reproduction. Fertil Steril 2000; 73(1): 136-42.
Blois SM, Joachim R, Kandil J, Margni R, Tometten M, Klapp BF, Arck PC. Depletion of CD8+ cells abolishes the pregnancy protective effect of progesterone substitution with dydrogesterone in mice by altering the Th1/Th2 cytokine profile. J Immunol 2004; 172(10): 5893-9.
Lim KJH, Odukoya OA, Ajjan RA, Tin-Chiu Li, et al. The role of T-help cytokines in human reproduction. Fertil and Steril 2000; 73(1): 136-42.
Wells D, Bermudez MG, Steuerwald N, Thornhill AR, Walker DL, Malter H, et al. Expression of genes regulating chromosome segregation, the cell cycle and apoptosis during human preimplantation development. Hum Reprod 2005; 20(5): 1339-48.
Wang Y, Wang F, Sun T, Trostinskaia A, Wygle D, Puscheck E, Rappolee DA. Entire mitogen activated protein kinase (MAPK) pathway is present in preimplantation mouse embryos. Dev Dyn 2004; 231(1): 72-87.
Maekawa M, Yamamoto T, Tanoue T, Yuasa Y, Chisaka O, Nishida E. Requirement of the MAP kinase signaling pathways for mouse preimplantation development. Development 2005; 132(8): 1773-83.
Zygmunt M, Herr F, Munstedt K, Lang U, Liang OD. Angiogenesis and vasculogenesis in pregnancy. Eur J Obstet Gynecol Reprod Biol 2003; 110(Suppl 1): S10-S18.
Scherf A, Pouvelle B, Buffet PA, Gysin J. Molecular mechanisms of Plasmodium falciparum placental adhesion. Cell Microbiol 2001; 3(3): 125-31.
Rowe JA, Kyes SA. The role of Plasmodium falciparum var genes in malaria in pregnancy. Mol Microbiol 2004; 53(4): 1011-9.
Beeson JG, Reeder JC, Rogerson SJ, Brown GV. Parasite adhesion and immune evasion in placental malaria. Trends Parasitol 2001; 17(7): 331-7.
King CL, Malhotra I, Mungai P, Wamachi A, Kioko J, Ouma JH, Kazura JW. B cell sensitization to helminthic infection develops in utero in humans. J Immunol 1998; 160(7): 3578-84.
Solana ME, Celentano AM, Tekiel V, Jones M, Gonzalez Cappa SM. Trypanosoma cruzi: effect of parasite subpopulation on murine pregnancy outcome. J Parasitol 2002; 88(1): 102-6.
Mjihdi A, Lambot MA, Stewart IJ, Detournay O, Noel JC, Carlier Y, Truyens C. Acute Trypanosoma cruzi infection in mouse induces infertility or placental parasite invasion and ischemic necrosis associated with massive fetal loss. Am J Pathol 2002; 161(2): 673-80.
Torrico F, Alonso-Vega C, Suarez E, Rodriguez P, Torrico MC, Dramaix M, et al. Maternal Trypanosoma cruzi infection, pregnancy outcome, morbidity, and mortality of congenitally infected and non-infected newborns in Bolivia. Am J Trop Med Hyg 2004; 70(2): 201-9.
Morales J, Velasco T, Tovar V, Fragoso G, Fleury A, Beltran C, et al. Castration and pregnancy of rural pigs significantly increase the prevalence of naturally acquired Taenia solium cysticercosis. Vet Parasitol 2002; 108(1): 41-8.
Quinn HE, Miller CM, Ellis JT. The cell-mediated immune response to Neospora caninum during pregnancy in the mouse is associated with a bias towards production of interleukin-4. Int J Parasitol 2004; 34(6): 723-32.
Abou-Bacar A, Pfaff AW, Letscher-Bru V, Filisetti D, Rajapakse R, Antoni E, et al. Role of gamma interferon and T cells in congenital Toxoplasma transmission. Parasite Immunol 2004; 26(8): 315-8.
Andrianarivo AG, Anderson ML, Rowe JD, Gardner IA, Reynolds JP, Choromanski L, Conrad PA. Immune responses during pregnancy in heifers naturally infected with Neospora caninum with and without immunization. Parasitol Res 2005; 96(1): 24-31.
Abdalla KF, Abdel-Aziz SM, el Fakahany AF, el-Hamshary AS, Afifi LM. Effect of praziquantel on sex hormone levels in murine Schistosomiasis mansoni. J Egypt Soc Parasitol 1994; 24(3): 627-32.
Wang YN, Ma XM, Li H, Zhang XY, Huang WC. Effect of experimental infection with Schistosoma japonicum on the pregnancy of mice. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2001; 19(4): 233-5.
Larralde C, Morales J, Terrazas I, Govezensky T, Romano MC. Sex hormone changes induced by the parasite lead to feminization of the male host in murine Taenia crassiceps cysticercosis. J Steroid Biochem Mol Biol 1995; 52(6): 575-80.
Escobedo G, Larralde C, Chavarria A, Cerbon MA, Morales- Montor J. Molecular mechanisms involved in the differential effects of sex steroids on the reproduction and infectivity of Taenia crassiceps. J Parasitol 2004; 90(6): 1235-44.
Barbee RA, Hicks MJ, Grosso D, Sandel C. The maternal immune response in coccidioidomycosis. Is pregnancy a risk factor for serious infection? Chest 1991; 100(3): 709-15.
Arinola OG, Louis J, Tacchini-Cottier F, Aseffa A, Salimonu LS. Interleukin-4 (IL-4) and interferon-gamma (IFN-gamma) in pregnant C57BL/6 mice infected with L. major at different pregnancyal periods. West Afr J Med 2004; 23(3): 202-7.
Bouyou-Akotet MK, Adegnika AA, Agnandji ST, Ngou-Milama E, Kombila M, Kremsner PG, Mavoungou E. Cortisol and susceptibility to malaria during pregnancy. Microbes Infect 2005; (7): 1217-23.
Cardoni RL, Garcia MM, De Rissio AM. Proinflammatory and anti-inflammatory cytokines in pregnant women chronically infected with Trypanosoma cruzi. Acta Trop 2004; 90(1): 65-72.
Miranda S, Litwin S, Barrientos G, Szereday L, Chuluyan E, Bartho JS, et al. Dendritic cells therapy confers a protective microenvironment in murine pregnancy. Scand J Immunol 2006; 64(5): 493-9.
Kozma N, Halasz M, Palkovics T, Szekeres-Bartho J. The progesterone- induced blocking factor modulates the balance of PKC and intracellular Ca. Am J Reprod Immunol 2006; 55(2): 122-9.
Kozma N, Halasz M, Polgar B, Poehlmann TG, Markert UR, Palkovics T, et al. Progesterone-induced blocking factor activates STAT6 via binding to a novel IL-4 receptor. J Immunol 2006; 176(2): 819-26.
Li J, McMurray RW. Effects of estrogen receptor subtype-selective agonists on immune functions in ovariectomized mice. Int Immunopharmacol 2006; (9): 1413-23.
Nakaya M, Tachibana H, Yamada K. Effect of estrogens on the interferon-gamma producing cell population of mouse splenocytes. Biosci Biotechnol Biochem 2006; 70(1): 47-53.
Sakazaki H, Ueno H, Nakamuro K. Estrogen receptor alpha in mouse splenic lymphocytes: possible involvement in immunity. Toxicol Lett 2002; 133(2-3): 221-9.
Lachmann M, Gelbmann D, Kalman E, Polgar B, Buschle M, Von Gabain A, Szekeres-Bartho J, Nagy E. PIBF (progesterone induced blocking factor) is overexpressed in highly proliferating cells and associated with the centrosome. Int J Cancer 2004; 112(1): 51-60.