2007, Número 4
<< Anterior Siguiente >>
Rev Invest Clin 2007; 59 (4)
Retinopatía diabética y vasoinhibinas
Moreno-Páramo D, Rivera JC, Aranda J, Salazar N, Arnold E, Quiroz-Mercado H, Martínez-de la Escalera G, Clapp C
Idioma: Español
Referencias bibliográficas: 50
Paginas: 290-297
Archivo PDF: 103.47 Kb.
FRAGMENTO
Paciente masculino de 63 años de edad con disminución progresiva de la agudeza visual en ambos ojos. Sus antecedentes heredofamiliares son positivos para diabetes mellitus, y presenta historia personal de diabetes mellitus tipo 2 tratada desde hace 10 años con hipoglucemiantes (5 mg glibenclamida dos veces al día). La exploración funcional reveló una agudeza visual de 3/10 con capacidad visual de 7/10 en el ojo derecho y de 6/10 con capacidad visual de 7/10 en el ojo izquierdo. La presión intraocular en ambos ojos fue normal (18 mm de Hg). La biomicroscopía mostró córneas transparentes, cámaras anteriores formadas sin neovascularización e iris sin rubeosis. En el cristalino derecho se observó una catarata subcapsular posterior y en el izquierdo una opacidad subcapsular posterior incipiente. Se detectaron microaneurismas, exudados y microhemorragias en dos cuadrantes del ojo derecho y en tres del izquierdo, que fueron confirmadas por fluoroangiografía. El diagnóstico fue cataratas mixtas en ambos ojos y retinopatía diabética no proliferativa leve en el ojo derecho y moderada en el izquierdo.
REFERENCIAS (EN ESTE ARTÍCULO)
Photocoagulation for diabetic Macular Edema. Early Treatment Diabetic Retinopathy Study Report Number 1. Early Treatment Diabetic Retinopathy Study Research Group. Arch Ophthalmol 1985; 103: 1796-806.
Aiello LP, Gardner TW, King GL, et al. Diabetic retinopathy. Diabetes Care 2000; 23: S73-S76.
Cai J, Boulton M. The pathogenesis of diabetic retinopathy: old concepts and new questions. Eye 2002; 16: 242-60.
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353-64.
Folkman J. Clinical applications of research on angiogenesis. New Engl J Med 1995; 333: 1757-63.
Stone J, Maslim J. Mechanisms of retinal angiogenesis. Prog Retin Eye Res 1997; 16: 157-81.
Das A, McGuire P. Retinal and choroidal angiogenesis: pathophysiology and strategies for inhibition. Prog Retin Eye Res 2003; 22: 721-48.
Sivalingam J, Kenney GC, Brown WE, et al. Basic fibroblast growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Opthalmol 1990; 108: 869-72.
Smith LE, Shen W, Perruzzi C, et al. Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin- like growth factor-1 receptor. Nature Med 1999; 5: 1390-5.
Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 2003; 22: 1-29.
Clapp C, Aranda J, González C, et al. Vasoinhibins: a family of N-terminal prolactin fragments that inhibit angiogenesis and vascular function. Front Horm Res 2006; 35: 64-73.
Corbacho AM, Martínez EG, Clapp C. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 2002; 173: 219-38.
Corbacho AM, Macotela Y, Nava G, et al. Human umbilical vein endothelial cells express multiple prolactin isoforms. J Endocrinol 2000; 166: 53-62.
Corbacho AM, Nava G, Eiserich JP, et al. Proteolytic cleavage confers nitric oxide synthase inducing activity upon prolactin. J Biol Chem 2000; 275: 13183-6.
Macotela Y, Aguilar MB, Guzmán-Morales J, et al. Matrix metalloproteases from chondrocytes generate an antiangiogenic 16kDa prolactin. J Cell Sci 2006; 119: 1790-800.
Clapp C, Torner L, Gutiérrez-Ospina G, et al. The prolactin gene is expressed in the hypothalamic-neurohypophyseal system and the protein is precessed into a 14-kDa fragment with activity like 16-kDa prolactin. Proc Natl Acad Sci USA 1994; 91: 10384-88.
Aranda J, Rivera JC, Jeziorski MC, et al. Prolactins are natural inhibitors of angiogenesis in the retina. Invest Ophthalmol Vis Sci 2005; 46: 2947-53.
Baldocchi RA, Tan L, King DS, et al. Mass spectrometric analysis of the fragments produced by cleavage and reduction of rat prolactin: Evidence that the cleaving enzyme is cathepsin D. Endocrinology 1993; 133: 935-8.
Cosío G, Jeziorski MC, López-Barrera F, et al. Hypoxia inhibits expresion of prolactin and secretion of cathepsin-D by the GH4C1 pituitary adenoma cell line. Lab Invest 2003; 83: 1627-36.
Clapp C, Martial JA, Guzman RC, et al. The 16-kilodalton Nterminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 1993; 133: 1292-9.
Lee H, Struman I, Clapp C, et al. Inhibition of urokinase activity by the antiangiogenic factor 16K prolactin: Activation of plasminogen activator inhibitor 1 expression. Endocrinology 1998; 139: 3696-703.
Martini JF, Piot C, Humeau LM, et al. The antiangiogenic factor 16K PRL induces programmed cell death in endothelial cells by caspase activation. Mol Endocrinol 2000; 14: 1536-49.
González C, Corbacho AM, Eiserich JP, et al. 16K-Prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization and endothelium-dependent vasorelaxation. Endocrinology 2004; 145: 5714-22.
García C, Macotela Y, González C, et al. Dephosphorylation of endothelial nitric oxide synthase contributes to inhibition of endothelial nitric oxide production by vasoinhibins. The Endocrine Society’s 88TH Annual Meeting. 2006; Abstract: P3- 4011.
Lane P, Gross SS. Disabling a C-terminal autoinhibitory control element in endothelial nitric-oxide synthase by phosphorylation provides a molecular explanation for activation of vascular NO synthesis by diverse physiological stimuli. J Biol Chem 2002; 277: 19087-94.
D’Angelo G, Martini JF, Iiri T, et al. 16K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol Endocrinol 1999; 13: 692-704.
Tabruyn SP, Sorlet CM, Rentier-Delrue F, et al. The antiangiogenic factor 16K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappa B. Mol Endocrinol 2003; 17: 1815-23.
Clapp C, Weiner R. A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology 1992; 130: 1380-6.
Pleyer U, Gupta D, Weidle EG, et al. Elevated prolactin levels in human aqueous humor of patients with anterior uveitis. Graefes Arch Clin Exp Ophtalmol 1991; 229: 447-51.
O’Steen WK, Sundberg DK. Patterns of radioactivity in the eyes of rats after injection of iodinated prolactin. Ophtalmic Res 1982; 14: 54-62.
Ochoa A, Montes de Oca P, Rivera JC, et al. Rat retinal capillary endothelial cells produced and secrete prolactin. Invest Ophthalmol Vis Sci 2001; 42: 1639-45.
Dueñas Z, Rivera JC, Quiroz-Mercado H, et al. Prolactin in eyes of patients with retinopathy of prematurity: implications for vascular regression. Invest Ophthalmol Vis Sci 2004; 45: 2049-55.
Pan H, Nguyen NQ, Yoshida H, et al. Molecular targeting of antiangiogenic factor 16K hPRL inhibits oxygen induced retinopathy in mice. Inves Ophthalmol Vis Sci 2004; 45: 2413-19.
Dueñas Z, Torner L, Corbacho AM, et al. Inhibition of rat corneal angiogenesis by 16-kDa prolactin and by endogenous prolactin-like molecules. Invest Ophthalmol Vis Sci 1999; 40: 2498-505.
Palmer EA, Flynn JT, Hardy RJ, et al. Incidence and early course of retinopathy of prematurity. The Cryotherapy for Retinopathy of Prematurity Cooperative Group. Ophthalmology 1991; 98: 1628-40.
IveName the Cryotherapy for Retinopathy of Prematurity Cooperative Group Collective Name. Multicenter trial of cryotherapy for retinopathy of prematurity: natural history ROP: ocular outcome at 5(1/2) years in premature infants with birth weights less than 1251 g. Arch Ophthalmol 2002; 120: 595-9.
Wright AD, Kohner EM, Oakley NW, et al. Serum growth hormone levels and the response of diabetic retinopathy to pituitary ablation. Br Med J 1969; 2: 346-8.
Jeffcoate W. Growth hormone therapy and its relationship to insulin resistance, glucose intolerance and diabetes mellitus: a review of recent evidence. Drug Saf 2002; 25: 199-212.
Merimee TJ, Zapf J, Foesch ER. Insulin-like growth factors. Studies in diabetes with and without retinopathy. N Engl J Med 1983; 309: 527-30.
Hunter PR, Anderson J, Lunn TA, et al. Diabetic retinopathy and prolactin. Lancet 1974; i: 1237.
Harter M, Balarac N, Pourcher PH, et al. Diabetic retinopathy and prolactin. Lancet 1976; ii: 961-2.
Mooradian AD, Morley JE, Billington CJ, et al. Hyperprolactinaemia in male diabetics. Postgrad Med J 1985; 61: 11-14.
Froland A, Hagen C, Lauritzen E. Diabetic retinopathy and prolactin. Lancet 1977; i: 45.
Srivatsa LP. Evolution and natural history of diabetic retinopathy during pregnancy. Metab Ped Sys Ophthalmol 1994; 17: 19-28.
Sheth BP. Does pregnancy accelerate the rate of progression of diabetic retinopathy? Curr Diab Rep 2002; 2: 327-30.
Hylander MA, Strobino DM, Pezzullo JC, Dhanireddy R. Association of human milk feedings with a reduction in retinopathy of prematurity among very low birthweight infants. J Perinatol 2001; 21: 356-62.
Healy DL, Rattigan S, Hartmann PE, et al. Prolactin in human milk: correlation with lactose, total protein, and alpha-lactalbumin levels. Am J Physiol 1980; 238: E83-E86.
Grosvenor CE, Whitworth NS. Accumulation of prolactin in maternal milk and its transfer to circulation of neonate rat: a review. Endocrinol Exp 1983; 17: 271-86.
Hawkins TA, Gala RR, Dunbar JC. Prolactin modulates the incidence of diabetes in male and female NOD mice. Autoimmunity 1994; 18: 155-62.
Holstad M, Sandler S. Prolactin protects against diabetes induced by multiple low doses of streptozotocin in mice. J Endocrinol 1999; 163: 229-34.