2011, Number 1
<< Back Next >>
Arch Neurocien 2011; 16 (1)
Determining the frequency of MAPT H1/H2 haplotype in Mexican mestizo pupulation samples
Dávila-Ortiz de Montellano DJ, Yescas-Gómez P, Alonso-Vilatela ME
Language: Spanish
References: 31
Page: 8-13
PDF size: 199.65 Kb.
ABSTRACT
Pathological and genetic studies have positioned the microtubule associated protein Tau (MAPT 17q21.1) in the center of the pathogenesis of several diseases known as tauopathies: progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Alzheimer’s disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), neurodegeneration with brain iron accumulation 1 (NBIA1), complex of parkinsonism-dementia of Guam, Pick’s disease and Parkinson’s disease (PD) among others. MAPT locus is structurally complex, containing a polymorphism of approximately 900 kb; this polymorphism creates tow reverse orientation, non-recombinant, haplotypes, H1 and H2, with a ~283pb deletion. In this study we ascertained the frequency of H1 and H2 alleles and the genotypes determined by them, the control group showed the next allelic frecuencies: 88.78% for the H1, 11.22% for the h2 allele; for the haplotypes H1/H1; H1/H2 and H2/H2 the frequencies were of 80.49%, 16.59% and 2.93%, respectively all of these haplotypes were in Hardy-Weinberg equilibrium. In the patient group H1 allele showed a frequency of 91.73% and H2 allele of 8.27%. The haplotypes frecuency were: 83.46% for H1/H1 and 16.54% for H1/H2, no H2/H2 subjects were observed, these frequencies were not in Hardy-Weinberg equilibrium. When comparing both groups, a significant statistically difference in terms ofthe genotype, sex and age, only a trend marked by the absence of H2/H2 genotype in the group of patients with PD. The allelic frequency for H1 is similar to that reported in North American, European and Asian populatios, while the H2 allelic frequency is lower than that reported for Caucasians, although higher than in Africa and Asia, likewise, different with other American populations (Colombia and Brazil) This is the first study that determinates the allelic and genotypes frequencies of MAPT H1 and H2 in a sample of Mexican mestizo subjects.
REFERENCES
Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet 2006;7: 85-97.
Álmos P, Horváth S, Czibula Á. H1 tau haplotype-related genomic variation at 17q21.3 as an Asian heritage of the European Gypsy population. Heredity 2008;101: 416–9.
Foster NLK. Wilhelmsen AA, Sima MZ, Jones CJ, D’Amato, S. Gilman. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann Neurol 2000;41:706-15.
Garcia ML, Cleveland DW. Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Oin Cell Biol 2001;13:41-8.
Jiang Z, Cote J. Kwon J. Aberrant Splicing of tau PremRNA Caused by Intronic Mutations Associated with the Inherited Dementia Frontotemporal Dementia with Parkinsonism Linked to Chromosome 17. Mol and Cell Biol 2000;20(11):4036-48.
Baker M, Litvan I, Houlen H. Association of an extended haplotype in tau gene with progressive supranuclear palsy. Hum Mol Genet 1999;8(4): 711-15.
Goode B, Chau M, Denis P, Feinstein S. Structural and Functional Differences between 3-Repeat aund 4-Repeat Tau Isoforms. J of Biol Chem 2000;275(49):38128-89.
Stefansson H, Helgason A, Thorleifsson G, et al. A common inversion under selection in Europeans. Nat Genet 2005; 37: 129-37.
Poorkaj P, Grossman M, Steinbart E, Payami H, Sadovnick A, Nochlin D, et al. Frequency of tau gene mutations in familial and sporadic cases of non-Alzheimer dementia. Arch Neurol 2002;58:383-7.
Dumanchin C, Camuzat A, Campion D, Verpillat P, Hannequin D, Dubois B, et al. Segregation of a missense mutation in the microtubule-associated protein tau gene with familial frontotemporal dementia and parkinsonism. Hum Mol Genet 1998; 7:1825–9.
Zee J van der, Rademakers R, Engelborghs S, Gijselinck I, Bogaerts V, Vandenberghe R, et al. A Belgian ancestral haplotype harbours a highly prevalent mutation for 17q21-linked tau-negative FTLD. Brain 2006;129:841-52.
Vandrovcova J, Pittman A, Malzer, E. Association of MAPT haplotype – tagging SNPs with sporadic Parkinson’s disease. Neurobiol Aging 2009;30:1477-28.
Kuopio AM, Marttila RJ, Helenius H, Rinne UK. Changing epidemiology of Parkinson’s disease in Southwestern Finland. Neurology 1999; 52: 302-8.
Thomas B. Beal MF. Parkinson’s disease. Hum Mol Genet 200716(2), R183-R194.
Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 2009;18(R1):R48-R59.
Maraganore DM. Interaction of alpha-synuclein and tau genotypes in Parkinson’s disease. Neurol 2005;439-43.
Fung HC, Scholz S, Matarin M, Simon-Sanchez J, Hernandez, Britton A, et al. Genomewide genotyping in Parkinson’s disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol 2006; 5,911–6.
Martin ER, Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, Lyons K, et al. Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease. JAMA 2001; 286, 2245-50.
Winkler, S, Konig, I. R, Lohmann-Hedrich, K, Vieregge, P, Kostic, V. & Klein, C. Role of ethnicity on the association of MAPT H1 haplotypes and subhaplotypes in Parkinson’s disease. Eur J Hum Genet 2007;15, 1163-8.
Zabetian CP, Hutter CM, Factor SA, Nutt JG, Higgins DS, Griffith A, et al. Association analysis of MAPT H1 haplotype and subhaplotypes in Parkinson’s disease. Ann Neurol 2007;62, 137-44.
Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW, Wang L, et al. Genome-Wide Association Study Confirms SNPs in SNCA and the MAPT Region as Common Risk Factors for Parkinson Disease. Ann Hum Genet 2010;74:97-109
Kaivorinne AL, Krüger J, Kuivaniemi K, Tuominen H, Moilanen V, Majamaa K, Remes A. Role of MAPT mutations and haplotype in frontotemporal lobar degeneration in Northern Finland. BMC Neurol 2008; 8:48.
Kar A, Kuo D, He R, Zhou J, Wu J. Tau alternative splicing and fronto-temporal demenitia. Alzheimer Dis Assoc Disord 2005; 19(Suppl 1):S29-S36.
Verpillat, P. Camuzat, A. Hannequin D. et al. Association Between Extended tau Haplotipe and Frontotemporal Dementia. Arch Neurol 2002;59:935-9.
Evans W, Fung HC, Steel J, Eerola J, Tienari P, Pittman A. et al. The tau H2 haplotype is almost exclusively caucasian in Origen. Neurosci Lett 2004;369:183-5.
Stefansson H, Helgason A, Thorleifsson G, Steinthorsdottir V, Masson G, Barnard J, et al. A common inversion under selection in Europeans. Nat Genet 2005;37: 129-37.
Luis Carlos Silva Aycaguer. Muestreo para la investigación en ciencias de la salud. Diaz de Santos, España,1993.
Conrad C, Andeadis A, Trojanowsky JQ, et al. Genetic evidence for the involvement of Tau in progressive supranuclear plasy. Ann Neurol 1997;2:259-73.
Reglamento de la Ley General de Salud en Materia de Investigación para la Salud.
18ª Asamblea Médica Mundial Helsinki, Finlandia, junio de 1964 y enmendadas por la 29ª Asamblea Médica Mundial Tokio, Japón, octubre de 1975, por la 35ª Asamblea Médica Mundial Venecia, Italia, octubre de 1983 y por la 41ª Asamblea Médica Mundial Hong Kong, en septiembre de 1989 48 Asamblea general Sumerset West, Sudáfrica octubre del 1996, 52ª Asamblea General Edimburgo, Escocia 2000.
Rodríguez, TR Gaunt and I Day. Hardy-Weinberg Equilibrium Testing or Biological Ascertainment for Mendelian Randomization Studies. Ame J Epidemiol Advance Access published on January 6, 2009. DOI 10.1093/aje/kwn359.