2011, Número 1
<< Anterior Siguiente >>
Arch Neurocien 2011; 16 (1)
La aspirina y taurina son pro-oxidantes en cerebro de ratas adultas
Calderón-Guzmán D, Hernández-García E, Barragán-Mejía G, Santamaría ÁD, Juárez-Jacobo EA, Segura-Abarca ML
Idioma: Español
Referencias bibliográficas: 35
Paginas: 14-19
Archivo PDF: 123.85 Kb.
RESUMEN
La aspirina (ASA) es el anti-inflamatorio no esteroidal mas ampliamente distribuido y con más frecuencia usado para combatir el dolor. En la catualidad se le atribuyen alteraciones del balance oxidante y antioxidante, aumentando el efecto analgésico si está se combina con sustancias antioxidantes exógenas.
Objetivos: medir parámetros indicadores de estrés oxidante en cerebro de ratas adultas con dosis única de ASA y taurina.
Material y métodos: se utilizaron ratas adultas macho con los siguientes tratamientos en una sola dosis:
grupo I control, NaCl 0.9%;
grupo II, ASA;
grupo III, taurina;
grupo IV, ASA+taurina. El ASA (20 mg/kg) y taurina (100 mg/kg) se administraron por vía i.p. A las dos horas de la administración, fueron sacrificadas y se midieron en homogenado de cerebro los niveles de peroxidación de lípidos (Tbars), glutatión (GSH), ácido 5-hidroxi-ildol acético (5-HIAA), y la actividad de Na
+, K
+ ATPasa, mediante métodos de espectrofotometría y fluorescencia.
Resultados: los niveles de Tbars se incrementaron significativamente en todos los grupos experimentales (p‹0.05), la concentración de 5-HIAA y GSH disminuyeron significativamente en todos los grupos experimentales (p‹0.05), la actividad de Na
+, K+ ATPasa y ATPasa total disminuyeron sólo en el grupo que recibió taurina (p‹0.05), todos con respecto al grupo control.
Conclusión: en base a los resultados se sugiere que el consumo de ASA y taurina alteran el metabolismo serotonérgico e inducen estrés oxidante en cerebro.
REFERENCIAS (EN ESTE ARTÍCULO)
Grootveld M, Halliwell B. 2,3-Dihydroxybenzoic acid is a product of human aspirin metabolism. Biochem Pharmacol 1998; 37(2):271-80.
Guerrero A, González-Correa JA, Arrebola MM, Muñoz-Marín J, Sánchez de la Cuesta F, De la Cruz JP. Antioxidant effects of a single dose of acetylsalicilic acid and salicylic acid in rat brain slices subjected to oxygen-glucose deprivation in relation with its antiplatelet effect. Neurosci Lett 2004; 358(3):153-6.
Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss of temporal and spatial memory by chronic administration of the spin trapping compound N-tert-butyl-alfa-phenylnitrone. Proc Natl Acad Sci 1991; 88:3633-6.
Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxides. Proc Natl Acad Sci USA 1990; 87:1624-9.
Gutteridge JM, Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci 1990; 15:129-35.
Driver AS, Kodavanti PR, Mundy WR. Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicology and Teratology 2000; 22:175-81.
Swapna I, Sathya KV, Murthy CR, Senthilkumaran B. Membrane alterations and fluidity changes in cerebral cortex during ammonia intoxication. Neuro Toxicology 2005; 335:700-4.
Stefanello FM, Chiarani F, Kurek AG. Methionine alters Na+, K+ ATPase activity, lipid peroxidation and nonenzymatic antioxidant defenses in rat hippocampus. Inter J Developmental Neuroscience 2005; 23:651-6.
Kagedal B, Golstein DS. Catecholamines and their metabolites. J Chromatograp 1988; 429:177-233.
Rokyta R, Holecek V, Pekarkova I, Krejcova J, Racek J, Trefil L, Yamamotova A. Free Radical after painful stimulation are influenced by antioxidants and analgesics. Neuro Endocrinol Lett 2003; 24(5):304-9.
Wu F, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr 2004; 134(3): 489-92.
Nandhini AT, Thirunavukkarasu V, Anuradha CV. Taurine modifies insulin signaling enzymes in the fructosa-fed insulin resistant rats. Diabetes Metab 2005; 31:337-44.
Beck O, Palmskog G, Hultman E. Quantitative determination of 5-hydroxyindole-3-acetic acid in body fluids by HPLC. Clin Chim Acta 1977; 79: 149-54.
Hissin PJ, Hilf R. A flurometric method for determination of oxidized and reduced glutathione in tissue. Anal Biochem 1976; 214-26.
Calderón-Guzmán D, Espitia-Vázquez I, López-Domínguez A, Hernández-García E, Huerta-Gertrudis B, Coballase-Urrutia E, et al. Effect of toluene and nutritional status on serotonin, lipid peroxidation levels and Na+/K+-ATPase in adult rat brain. Neurochem Res 2005; 5:1-6.
Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem 1925; 66:375-400.
Castilla-Serna, L. Estadística simplificada para la investigación en Ciencias de la Salud. Editorial Trillas. 2° Edición. México, D.F. 1999.
Saransaari P, Oja SS. Characteristics of taurine release in slices from adult and developing mouse brain stem. Amino Acids 2006; 31(1):35-43.
Franconi F, Miceli M, Bennardini F, Mattana A, Covarrubias J, Seghieri G. Taurine potentiates the antiaggregatory action of aspirin and indomethacin. Adv Exp Med Biol 1992; 315:181-6.
O´Connell MJ, Webster NR. Hyperoxia and salicylate metabolism in rats. J Pharm Pharmacol 1990; 42:205-6.
Tubaro M, Caballo G, Pensa V, Chessa MA, Natale E, Ricci R, Milazzotto F, Tubaro E. Demonstration of the formation of hydroxyl radicals in acute myocardial infarction in man using salicylate as probe. Cardiology 1992; 80(3-4):246-51.
Murakami S, Nara Y, Yamori Y. Taurine accelerates the regression of hipercholesterolemia in stroke-prone spontaneously hypertensive rats. Life Sci 1996; 58:1643-1651.
Clark EC, Thomas D, Baer J, Sterns RH. Depletion of glutathione from brain cells in hyponatremia. Kyney Int 1996; 49(2): 470-6.
Rylance HJ. Hypertaurinuria in rheumatoid artritis. Ann Rheum Dis 1969; 28:41-44.
Ota S, Razandi M, Sekhon S, Karause WJ, Terano A, Hiraishi H, et al. Salicylate effects on a monolayer culture of gastric mucous cells from adult rats. Gut 1988; 29(12):1705-14.
Jhamandas JH, Harris KH, Petrov T, Jhamandas KH. Activation of nitric oxide-synthesizing neurones during precipitated morphine withdrawal. Neuroreport 1996;7: 2843-6.
Goudas LC, Langlade A, Serrie A, Matson W, Milbury P, Thurel C, et al. Acute decreases in cerebrospinal fluid glutathione levels after intracerebroventricular morphine for cancer pain. Anesth Analg 1999; 89(5): 1209-15.
Chen JW, Zhang L, Lian X, Hwang F. Effect of hydroxyl radical on Na(+)-K(+)-ATPase activity of the brain microsomal membranes. Cell Biol Int Rep 1992; 16:927-36.
Hernández RJ. A serotonin agonist-antagonist reversible effect on Na+,K+ ATPase activity in the developing rat brain. Dev Neurosci 1982; 5:326-31.
Lehotssky J, Kaplan P, Racay P, Matejovicova M, Drgova A, Mezesova V. Membrane ion transport systems during oxidative stress in rodent brain: Protective effects of stobadine and other antioxidants. Life Sci 1999; 65:1951-8.
Sandrini M, Vitale G, Pini LA. Central antinociceptive activity of acetylsalicylic acid is moduled by brain serotonin receptor subtypes. Pharmacology 2002; 65(4):193-7.
Davis FB, Smith TJ, Deziel MR, Davies PJ, Blas SD. Retinoic acid inhibits calmodulin binding to human erythrocyte membranes and reduces membrane Ca2(+)-adenosine triphosphatase activity. J Clin Invest 1990; 85(6):1999-2003.
Pushpakiran G, Mahalakshmi K, Viswanathan P, Anuradha CV. Taurine prevents ethanol-induced alterations in lipids and ATPases in rat tissues. Pharmacol Rep 2005;578-87.
Saransaari P, Oja SS. Taurine and neural cell damage. Transport of taurine in adult and developing mice. Adv Exp Med Biol 1996;403:481-90.
Wang HR, Li JS, Chen J, Zhang H. Effects of taurine and zinc on activity of NOS and expresión of nNOS in cerebral cortex of acute hypoxic mice. Wei Sheng Yan Jiu 2006; 35(1):97-9.