2009, Number 4
<< Back Next >>
Rev Inst Nal Enf Resp Mex 2009; 22 (4)
Current concepts in genome-wide association studies (GWAS) in chronic obstructive pulmonary disease
Pérez-Rubio G, Silva-Zolezzi I, Ramírez-Venegas A, Sansores RH, Reséndiz-Hernández JM, Montaño M, Camarena Á, Falfán-Valencia R
Language: Spanish
References: 49
Page: 337-346
PDF size: 72.83 Kb.
ABSTRACT
Cigarette smoking is considered as the major risk factor for chronic obstructive pulmonary disease (COPD); however, only 10-20% of smokers develop the disease. The extent of cigarette smoking (pack-year, duration of smoking habit) only accounts for 15% of the variation in lung function, indicating that factors other than tobacco habit must be involved in susceptibility to COPD. This disease is unique among complex genetic illnesses in that the environmental risk factor is known and the level of exposure can be documented with some precision. The high rates of mortality and morbidity associated with COPD, as well as its chronic and progressive nature, has prompted the use of molecular genetic studies in an attempt to identify additional susceptibility factors. Genetic linkage studies are very powerful for the study of monogenic disorders, but have limited power in complex genetic disorders where many genes are likely to be acting and there are no clear inheritance patterns. Currently, with the completion of the human genome project, the human genetic sequence is known and publicly available for consultation. These advances in the knowledge, along with technological progresses that allow high throughput genotyping of thousands of polymorphisms on hundreds or thousands of individuals, have provided a remarkable set of tools to discover genes/polymorphisms relevant for biomedical research. In this review we describe the most recent scenario related to genetic association studies in COPD.
REFERENCES
Gordillo CR, Gómez ML, Hipólito CR, Lamuño EM, Pérez CR. Enfermedad pulmonar obstructiva crónica. Rev Asoc Mex Med Crit Ter Int 2002;16:201-210.
Sansores MR, Ramírez-Venegas A. Enfermedad pulmonar obstructiva crónica y la celebración de su primer Día Mundial (editorial). Rev Inst Nal Enf Resp Mex 2002;15:199-200.
Consenso Mexicano de EPOC. Panorama epidemiológico e impacto económico actual. Neumol Cir Torax 2007;66 Supl 2:13-16.
Pauwels RA, Rabe KF. Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet 2004;364:613-620.
Portal INER. Clínica de EPOC. Fecha de acceso: 23 de noviembre, 2009. Accesible en: http://portal.iner. gob.mx/inerweb/GEN_cont_esp.jsp?contentid= 1987&version=1&channelid=3
Guo X, Lin HM, Lin Z, et ál. Surfactant protein gene A, B, and D marker alleles in chronic obstructive pulmonary disease of a Mexican population. Eur Respir J 2001;18:482-490.
Burrows B, Knudson RJ, Cline MG, Lebowitz MD. Quantitative relationships between cigarette smoking and ventilatory function. Am Rev Respir Dis 1977; 115:195-205.
Silverman EK, Chapman HA, Drazen JM, et ál. Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for airflow obstruction and chronic bronchitis. Am J Respir Crit Care Med 1998;157(6 Pt 1):1770-1778.
Wilk JB, Walter RE, Laramie JM, Gottlieb DJ, O’Connor GT. Framingham Heart Study genome-wide association: results for pulmonary function measures. BMC Med Genet 2007;8 Suppl 1:8.
Silverman EK, Speizer FE. Risk factors for the development of chronic obstructive pulmonary disease. Med Clin North Am 1996;80:501-522.
Sandford AJ, Weir TD, Spinelli JJ, Paré PD. Z and S mutations of the alpha1-antitrypsin gene and the risk of chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 1999;20:287-291.
Redline S, Tishler PV, Rosner B, et ál. Genotypic and phenotypic similarities in pulmonary function among family members of adult monozygotic and dizygotic twins. Am J Epidemiol 1989;129:827-836.
Burton PR, Tobin MD, Hopper JL. Key concepts in genetic epidemiology. Lancet 2005;366:941-951.
Cordell HJ, Clayton DG. Genetic association studies. Lancet 2005;366:1121-1131.
Silverman EK, Palmer LJ. Case-control association studies for the genetics of complex respiratory diseases. Am J Respir Cell Mol Biol 2000;22:645-648.
Jimenez-Sanchez G, Silva-Zolezzi I, Hidalgo A, March S. Genomic medicine in Mexico: initial steps and the road ahead. Genome Res 2008;18:1191-1198.
International HapMap Consortium; Frazer KA, Ballinger DG, Cox DR, et ál. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007;449:851-861.
Silva-Zolezzi I, Hidalgo-Miranda A, Estrada-Gil J, et ál. Analysis of genomic diversity in Mexican Mestizo populations to develop genomic medicine in Mexico. Proc Natl Acad Sci USA 2009;106:8611-8616.
Xu Z, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res 2009;37(Web Server issue):600-605.
Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA 2008;299:1335-1344.
Kruglyak L. The road to genome-wide association studies. Nat Rev Genet 2008;9:314-318.
Demeo DL, Mariani TJ, Lange C, et ál. The SERPINE2 gene is associated with chronic obstructive pulmonary disease. Am J Hum Genet 2006;78:253-264.
Brøgger J, Steen VM, Eiken HG, Gulsvik A, Bakke P. Genetic association between COPD and polymorphisms in TNF, ADRB2 and EPHX1. Eur Respir J 2006;27:682-688.
van Diemen CC, Postma DS, Vonk JM, Bruinenberg M, Nolte IM, Boezen HM. Decorin and TGF-beta1 polymorphisms and development of COPD in a general population. Respir Res 2006;7:89.
Sadeghnejad A, Ohar JA, Zheng SL, et ál. Adam33 polymorphisms are associated with COPD and lung function in long-term tobacco smokers. Respir Res 2009;10:21.
Córdoba-Lanús E, de-Torres JP, López-Aguilar C, et ál. Association of IL-6 gene polymorphisms and COPD in a Spanish population. Respir Med 2008;102:1805-1811.
Homma S, Sakamoto T, Hegab AE, et ál. Association of phosphodiesterase 4D gene polymorphisms with chronic obstructive pulmonary disease: relationship to interleukin 13 gene polymorphism. Int J Mol Med 2006;18:933-939.
Zidzik J, Slabá E, Joppa P, et ál. Glutathione S-transferase and microsomal epoxide hydrolase gene polymorphisms and risk of chronic obstructive pulmonary disease in Slovak population. Croat Med J 2008;49: 182-191.
Ishii T, Matsuse T, Teramoto S, et ál. Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax 1999;54:693-696.
Zhou M, Huang SG, Wan HY, Li B, Deng WW, Li M. Genetic polymorphism in matrix metalloproteinase-9 and the susceptibility to chronic obstructive pulmonary disease in Han population of south China. Chin Med J (Engl) 2004;117:1481-1484.
Vacca G, Schwabe K, Dück R, et ál. Polymorphisms of the beta2 adrenoreceptor gene in chronic obstructive pulmonary disease. Ther Adv Respir Dis 2009;3:3-10.
Pillai SG, Ge D, Zhu G, et ál. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 2009;5:e1000421.
Poller W, Faber JP, Scholz S, et ál. Mis-sense mutation of alpha 1-antichymotrypsin gene associated with chronic lung disease. Lancet 1992;339:1538.
Poller W, Faber JP, Weidinger S, et ál. A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics 1993;17:740-743.
Ishii T, Matsuse T, Teramoto S, et ál. Association between alpha-1-antichymotrypsin polymorphism and susceptibility to chronic obstructive pulmonary disease. Eur J Clin Invest 2000;30:543-548.
Huang SL, Su CH, Chang SC. Tumor necrosis factor-alpha gene polymorphism in chronic bronchitis. Am J Respir Crit Care Med 1997;156:1436-1439.
Sakao S, Tatsumi K, Igari H, Shino Y, Shirasawa H, Kuriyama T. Association of tumor necrosis factor alpha gene promoter polymorphism with the presence of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;163:420-422.
Vernooy JH, Küçükaycan M, Jacobs JA, et ál. Local and systemic inflammation in patients with chronic obstructive pulmonary disease: soluble tumor necrosis factor receptors are increased in sputum. Am J Respir Crit Care Med 2002;166:1218-1224.
Ito I, Nagai S, Hoshino Y, et ál. Risk and severity of COPD is associated with the group-specific component of serum globulin 1F allele. Chest 2004;125:63-70.
Takabatake N, Shibata Y, Abe S, et ál. A single nucleotide polymorphism in the CCL1 gene predicts acute exacerbations in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006;174:875-885.
Hersh CP, Demeo DL, Lange C, et ál. Attempted replication of reported chronic obstructive pulmonary disease candidate gene associations. Am J Respir Cell Mol Biol 2005;33:71-78.
Wilk JB, Chen TH, Gottlieb DJ, et ál. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet 2009;5:e1000429.
Repapi E, Sayers I, Wain LV, et ál. Genome-wide association study identifies five loci associated with lung function. Nat Genet 2010;42:36-44.
Myint PK, Luben RN, Surtees PG, et ál. Respiratory function and self-reported functional health: EPIC-Norfolk population study. Eur Respir J 2005;26:494-502.
Schünemann HJ, Dorn J, Grant BJ, Winkelstein W Jr, Trevisan M. Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. Chest 2000;118:656-664.
Strachan DP. Ventilatory function, height, and mortality among lifelong non-smokers. J Epidemiol Community Health 1992;46:66-70.
Young RP, Hopkins R, Eaton TE. Forced expiratory volume in one second: not just a lung function test but a marker of premature death from all causes. Eur Respir J 2007;30:616-622.
Miller LA, Wert SE, Clark JC, Xu Y, Perl AK, Whitsett JA. Role of Sonic hedgehog in patterning of tracheal-bronchial cartilage and the peripheral lung. Dev Dyn 2004;231:57-71.
Hancock DB, Eijgelsheim M, Wilk JB, et ál. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet 2010;42:45-52.