2008, Number 4
<< Back Next >>
Rev Inst Nal Enf Resp Mex 2008; 21 (4)
Tumor behavior and glycosylation
Gorocica RP, Atzín JA, Saldaña AK, Espinosa B, Urrea FJ, Alvarado VN, Lascurain R
Language: Spanish
References: 59
Page: 280-287
PDF size: 93.18 Kb.
ABSTRACT
Molecular modifications in the N- and O-glycans take place during carcinogenesis. These changes are due to cell signaling that regulates the expression of enzymes responsible for the biosynthesis of glycans. This generates new epitopes or uncover ordinarily hidden epitopes, which are then recognized by elements of the immune response that promote or limit the tumor growth. Among the most important tumor-associated antigens are sialyl Lewis X, T-antigen and Tn-antigen. This review refers to those glycosylated antigens relevant in the progression or control of tumors and the components of the immune response involved.
REFERENCES
Suzuki T, Kitajima K, Inoue S, Inoue Y. N-glycosylation/deglycosylation as a mechanism for the post-translational modification/remodification of proteins. Glycoconj J 1995;12:183-193.
Varki A, Cummings R, EskoJ, Freeze H, Hart G, Marth J. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press;1999.p. 653.
Van den Steen, Rudd PM, Dwek RA, Opdenakker G. Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 1998;33:151-208.
Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1999;1473:67-95.
Löfling J, Holgersson J. Core saccharide dependence of sialyl Lewis X biosynthesis. Glycoconj J 2009;26:33-40.
Broquet P, Baubichon-Cortay H, George P, Louisot P. Glycoprotein sialyltransferases in eucaryotic cells. Int J Biochem 1991;23:385-389.
Dall’Olio F, Chiricolo M. Sialyltransferases in cancer. Glycoconj J 2001;18:841-850.
Malisan F, Testi R. GD3 ganglioside and apoptosis. Biochim Biophys Acta 2002;1585:179-187.
Schauer R, Kelm S, Reuter G, Roggentin P, Shaw L. Biochemistry and role of sialic acid. In: Rosemberg A, editor. Biology of sialic acid. New York: Plenum Press; 1995.p.7-67.
Manzi AE, Sjoberg ER, Diaz S, Varki A. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells. J Biol Chem 1990;265:13091-13103.
Varki A. Diversity in the sialic acid. Glycobiology 1992;2:25-40.
Varki NM, Varki A. Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 2007;87:851-857.
Hedlund M, Ng E, Varki A, Varki NM. a2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res 2008;68:388-394.
Mouritsen S, Meldal M, Christiansen-Brams I, Elsner H, Werdelin O. Attachment of oligosaccharides to peptide antigen profoundly affects binding to major histocompatibility complex class II molecules and peptide immunogenicity. Eur J Immunol 1994;24:1066-1072.
Couldrey C, Green JE. Metastases: the glycan connection. Breast Cancer Res 2000;2:321-323.
Laidler P, Lityñska A. Tumor cell N-glycans in metastasis. Acta Biochim Pol 1997;44:343-357.
Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 2004;4:45-60.
Yamashita Y, Chung YS, Horie R, Kannagi R, Sowa M. Alterations in gastric mucin with malignants transformation: novel pathway for mucin synthesis. J Natl Cancer Inst 1995;87:441-446.
Peracaula R, Barrabés S, Sarrats A, Rudd PM, de Llorens R. Altered glycosylation in tumours focused to cancer diagnosis. Dis Markers 2008;25:207-218.
Nicoll G, Avril T, Lock K, Furukawa K, Bovin N, Crocker PR. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur J Immunol 2003; 33:1642-1648.
Sheu BC, Chang WC, Cheng CY, Lin HH, Chang DY, Huang SC. Cytokine regulation networks in the cancer microenvironment. Front Biosci 2008;13:6255-6268.
Yao H, Guo L, Jiang BH, Luo J, Shi X. Oxidative stress and chromium(VI) carcinogenesis. J Environ Pathol Toxicol Oncol 2008;27:77-88.
Ko JH, Miyoshi E, Noda K, et ál. Regulation of the GnT-V promoter by transcription factor Ets-1 in various cancer cell lines. J Biol Chem 1999;274:22941-22948.
Zhang W, Revers L, Pierce M, Schachter H. Regulation of expression of the human beta-1,2-N-acetylglucosaminyltransferase II gene (MGAT2) by Ets transcription factors. Biochem J 2000;347(Pt 2):511-518.
Miyoshi E, Noda K, Yamaguchi Y, et ál. The alpha1-6-fucosyltransferase gene and its biological significance. Biochim Biophys Acta 1999;1473:9-20.
Gendler SJ. MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia 2001;6:339-353.
Stepensky D, Tzehoval E, Vadai E, Eisenbach L. O-glycosylated versus non-glycosylated MUC1-derived peptides as potential targets for cytotoxic immunotherapy of carcinoma. Clin Exp Immunol 2006; 143:139-149.
Reis CA, David L, Seixas M, Burchell J, Sobrinho-Simões M. Expression of fully and under-glycosylated forms of MUC1 mucin in gastric carcinoma. Int J Cancer 1998;79:402-410.
Ho SB, Kim YS. Carbohydrate antigens on cancer-associated mucin-like molecules. Semin Cancer Biol 1991;2:389-400.
Hanisch FG, Stadie TR, Deutzmann F, Peter-Katalinic J. MUC1 glycoforms in breast cancer-cell line T47D as a model for carcinoma-associated alterations of 0-glycosylation. Eur J Biochem 1996;236:318-327.
Matsushita Y, Cleary KR, Ota DM, Hoff SD, Irimura T. Sialyl-dimeric Lewis-X antigen expressed on mucin-like glycoproteins in colorectal cancer metastases. Lab Invest 1990;63:780-791.
Lloyd KO, Burchell J, Kudryashov V, Yin BW, Taylor-Papadimitriou J. Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J Biol Chem 1996;271:33325-33334.
Amaya S, Sasaki M, Watanabe Y, et ál. Expression of MUC1 and MUC2 and carbohydrate antigen Tn change during malignant transformation of biliary papillomatosis. Histopathology 2001;38:550-560.
Springer GF. T and Tn, general carcinoma autoantigens. Science 1984;224:1198-1206.
Xu Y, Sette A, Sidney J, Gendler SJ, Franco A. Tumor-associated carbohydrate antigens: a possible avenue for cancer prevention. Immunol Cell Biol 2005;83: 440-448.
Ugorski M, Laskowska A. Sialyl Lewisa: a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochem Pol 2002;49:303-311.
Singhal A, Hakomori S. Molecular changes in carbohydrate antigens associated with cancer. Bioessays 1990;12:223-230.
Yeh JC, Hiraoka N, Petryniak B, et ál. Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-N-acetylglucosaminyltransferase. Cell 2001;105:957-969.
Croce MV, Isla-Larrain M, Rabassa ME, et ál. Lewis X is highly expressed in normal tissues: a comparative immunohistochemical study and literature revision. Pathol Oncol Res 2007;13:130-138.
McDermott KM, Crocker PR, Harris A, et ál. Overexpression of MUC1 reconfigures the binding properties of tumor cells. Int J Cancer 2001;94:783-791.
Quinlin IS, Burnside JS, Dombrowski KE, Phillips CA, Dolby N, Wright SE. Context of MUC1 epitope: immunogenicity. Oncol Rep 2007;17:453-456.
Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 2004;23:77-99.
Ohyama C, Kanto S, Kato K, et ál. Natural killer cells attack tumor cells expressing high levels of sialyl Lewis X oligosaccharides. Proc Natl Acad Sci U S A 2002;99: 13789-13794.
Ohyama C, Tsuboi S, Fukuda M. Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. EMBO J 1999;18:1516-1525.
McNerlan SE, Rea IM, Alexander HD, Morris TC. Changes in natural killer cells, the CD57CD8 subset, and related cytokines in healthy aging. J Clin Immunol 1998;18:31-38.
Characiejus D, Pasukoniene V, Jonusauskaite R, et ál. Peripheral blood CD8highCD57+ lymphocyte levels may predict outcome in melanoma patients treated with adjuvant interferon-alpha. Anticancer Res 2008;28:1139-1142.
Okada T, Iiai T, Kawachi Y, et ál. Origin of CD57+ T cells which increase at tumour sites in patients with colorectal cancer. Clin Exp Immunol 1995;102:159-166.
Phillips JH, Chang C, Mattson J, Gumperz JE, Parham P, Lanier LL. CD94 and a novel associated protein (94AP) form a NK cell receptor involved in the recognition of HLA-A, HLA-B, and HLA-C allotypes. Immunity 1996;5:163-172.
Ding Y, Sumitran S, Holgersson J. Direct binding of purified HLA class I antigens by soluble NKG2/CD94 C-type lectins from natural killer cells. Scand J Immunol 1999;49:459-465.
Higai K, Ichikawa A, Matsumoto K. Binding of sialyl Lewis X antigen to lectin-like receptors on NK cells induces cytotoxicity and tyrosine phosphorylation of a 17-kDa protein. Biochim Biophys Acta 2006;1760: 1355-1363.
Nakakubo Y, Miyamoto M, Cho Y, et ál. Clinical significance of immune cell infiltration within gallbladder cancer. Br J Cancer 2003;89:1736-1742.
Jensen T, Galli-Stampino L, Mouritsen S, et ál. T cell recognition of Tn-glycosylated peptide antigens. Eur J Immunol 1996;26:1342-1349.
Galli-Stampino L, Meinjohanns E, Frische K, et ál. T-cell recognition of tumor-associated carbohydrates: the nature of the glycan moiety plays a decisive role in determining glycopeptide immunogenicity. Cancer Res 1997;57:3214-3222.
Tsuboi S, Fukuda M. Roles of O-linked oligosaccharides in immune responses. Bioessays 2001;23:46-53.
Hakomori S. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv Exp Med Biol 2001;491: 369-402.
Kuemmel A, Single K, Bittinger F, et ál. TA-MUC1 epitope in non-small cell lung cancer. Lung Cancer 2009;63:98-105.
Hanisch FG, Ninkovic T. Immunology of O-glycosylated proteins: approaches to the design of a MUC1 glycopeptide-based tumor vaccine. Curr Protein Pept Sci 2006;7:307-315.
Fernández-Rodríguez J, Dwir O, Alon R, Hansson GC. Tumor cell MUC1 and CD43 are glycosylated differently with sialyl-Lewis a and x epitopes and show variable interactions with E-selectin under physiological flow conditions. Glycoconj J 2001;18:925-930.
Fukuda M. Possible roles of tumor-associated carbohydrate antigens. Cancer Res 1996;56:2237-2244.