2008, Número 4
<< Anterior Siguiente >>
Rev Inst Nal Enf Resp Mex 2008; 21 (4)
PD-1 y sus ligandos como reguladores de la respuesta inmune
Vargas-Rojas MI, Jiménez-Álvarez L, Ramírez G, Torres-García D, Barquera R, Gastelum-Martínez AA, Zúñiga J
Idioma: Español
Referencias bibliográficas: 57
Paginas: 272-279
Archivo PDF: 102.76 Kb.
RESUMEN
La molécula de muerte programada 1 (PD-1) y sus ligandos PD-L1 y PD-L2 son importantes en el control de la activación de las células T. El balance de la inmunidad mediada por las células T es determinante en el control de enfermedades infecciosas y cáncer y en el desarrollo de tolerancia inmunológica a los antígenos propios. La inducción y mantenimiento de la tolerancia mediada por células T a través de la vía PD-1/PDL limita la respuesta de subpoblaciones de células T efectoras para evitar daño tisular como resultado de una mayor actividad de la inmunidad. Las alteraciones en la interacción de PD-1 y sus ligandos son utilizadas como un mecanismo de escape inmunológico por células tumorales para la progresión de cáncer; asimismo ciertos microorganismos pueden alterar esta vía dando como resultado el desarrollo y progresión de las infecciones crónicas. El descubrimiento de esta vía de regulación negativa en la activación de las células T abre nuevas perspectivas en la aplicación clínica, mediante el uso de agonistas y antagonistas del PD-1 en diferentes enfermedades humanas.
REFERENCIAS (EN ESTE ARTÍCULO)
Lafferty KJ, Cunningham AJ. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci 1975;53:27-42.
Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005;23:515-548.
Okazaki T, Honjo T. The PD- 1-PD-L pathway in immunological tolerance. Trends Immunol 2006; 27:195-201.
Parry RV, Chemnitz JM, Frauwirth KA, et ál. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005;25:9543-9553.
Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11:3887-3895.
Liang SC, Latchman YE, Buhlmann JE, et ál. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 2003;33: 2706-2716.
Zhang X, Schwartz JC, Guo X, et ál. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 2004;20:337-347.
Shinohara T, Taniwaki M, Ishida Y, Kawaichi M, Honjo T. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics 1994;23: 704-706.
Freeman GJ, Long AJ, Iwai Y, et ál. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027-1034.
Ishida M, Iwai Y, Tanaka Y, et ál. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett 2002;84:57-62.
Latchman Y, Wood CR, Chernova T, et ál. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001;2:261-268.
Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5:1365-1369.
Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci USA 2003;100:5336-5341.
Agata Y, Kawasaki A, Nishimura H, et ál. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996;8:765-772.
Yamazaki T, Akiba H, Iwai H, et ál. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 2002;169:5538-5545.
Brown JA, Dorfman DM, Ma FR, et ál. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 2003;170:1257-1266.
Carter L, Fouser LA, Jussif J, et ál. PD-1:PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. Eur J Immunol 2002; 32:634-643.
Matsumoto K, Inoue H, Nakano T, et ál. B7-CD regulates asthmatic response by an INF-gamma-dependent mechanism. J Immunol 2004;172:2530-2541.
Fukushima A, Yamaguchi T, Azuma M, Yagita H, Ueno H. Involvement of programmed death-ligand 2 (PD-L2) in the development of experimental allergic conjunctivitis in mice. Br J Ophthalmol 2006;90: 1040-1045.
Nishimura H, Okazaki T, Tanaka Y, et ál. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001;291:319-322.
Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999;11:141-151.
Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1 _/_ mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci USA 2005;102:11823-11828.
Prokunina L, Castillejo-López C, Oberg F, et ál. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002;32:666-669.
Tsao BP. Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol 2004;16:513-521.
Lindqvist AK, Steinsson K, Johanneson B, et ál. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J Autoimmun 2000;14:169-178.
Thorburn CM, Prokunina-Olsson L, Sterba KA, et ál. Association of PDCD1 genetic variation with risk and clinical manifestations of systemic lupus erythematosus in a multiethnic cohort. Genes Immun 2007;8:279-287.
Ferreiros-Vidal I, Gomez-Reino JJ, Barros F, et ál. Association of PDCD1 with susceptibility to systemic lupus erythematosus: evidence of population-specific effects. Arthritis Rheum 2004;50:2590-2597.
Ferreiros-Vidal I, D’Alfonso S, Papasteriades C, et ál. Bias in association studies of systemic lupus erythematosus susceptibility due to geographical variation in the frequency of a programmed cell death 1 polymorphism across Europe. Genes Immun 2007;8:138-146.
Kong EK, Prokunina-Olsson L, Wong WH, et ál. A new haplotype of PDCD1 is associated with rheumatoid arthritis in Hong Kong Chinese. Arthritis Rheum 2005;52:1058-1062.
Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K. Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet 2005;50:264-266.
Prokunina L, Padyukov L, Bennet A, et ál. Association of the PD-1.3A allele of the PDCD1 gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. Arthritis Rheum 2004;50:1770-1773.
Lin SC, Yen JH, Tsai JJ, et ál. Association of a programmed death 1 gene polymorphism with the development of rheumatoid arthritis, but not systemic lupus erythematosus. Arthritis Rheum 2004;50: 770-775.
Kong EK, Prokunina-Olsson L, Wong WH, et ál. A new haplotype of PDCD1 is associated with rheumatoid arthritis in Hong Kong Chinese. Arthritis Rheum 2005;52:1058-1062.
Iwamoto T, Ikari K, Inoue E, et ál. Failure to confirm association between PDCD1 polymorphisms and rheumatoid arthritis in a Japanese population. J Hum Genet 2007;52:557-560.
Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol 2006;90:51-81.
Khong HT, Restifo NP. Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immunol 2002;3:999-1005.
Dong H, Chen L. B7-H1 pathway and its role in the evasion of tumor immunity. J Mol Med 2003;81: 281-287.
Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 2008;111:3635-3643.
Thompson RH, Gillett MD, Cheville JC, et ál. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci U S A 2004;101: 17174-17179.
Thompson RH, Dong H, Lohse CM, et ál. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res 2007;13:1757-1761.
Yamamoto R, Nishikori M, Kitawaki T, et ál. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 2008;111:3220-3224.
He YF, Zhang GM, Wang XH, et ál. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol 2004;173:4919-4928.
Hirano F, Kaneko K, Tamura H, et ál. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 2005;65:1089-1096.
Liu J, Hamrouni A, Wolowiec D, et ál. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-g and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007;110:296-304.
Geng H, Zhang GM, Xiao H, et ál. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int J Cancer 2006;118:2657-2664.
Barber DL, Wherry EJ, Masopust D, et ál. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006;439:682-687.
Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J Virol 2004;78:5535-5545.
Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH. Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med 2006;203:2223-2227.
Martinic MM, von Herrath MG. Novel strategies to eliminate persistent viral infections. Trends Immunol 2008;29:116-124.
Petrovas C, Casazza JP, Brenchley JM, et ál. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J Exp Med 2006;203:2281-2292.
Day CL, Kaufmann DE, Kiepiela P, et ál. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006;443:350-354.
Trautmann L, Janbazian L, Chomont N, et ál. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 2006;12:1198-1202.
Boettler T, Panther E, Bengsch B, et ál. Expression of the interleukin-7 receptor alpha chain (CD127) on virus-specific CD8+ T cells identifies functionally and phenotypically defined memory T cells during acute resolving hepatitis B virus infection. J Virol 2006;80: 3532-3540.
Boni C, Fisicaro P, Valdatta C, et ál. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol 2007;81:4215-4225.
Urbani S, Amadei B, Tola D, et ál. PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J Virol 2006;80: 11398-11403.
Yao ZQ, King E, Prayther D, Yin D, Moorman J. T cell dysfunction by hepatitis C virus core protein involves PD-1/PDL-1 signaling. Viral Immunol 2007;20: 276-287.
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677-704.