2008, Número 4
<< Anterior Siguiente >>
Rev Inst Nal Enf Resp Mex 2008; 21 (4)
Comportamiento tumoral y glicosilación
Gorocica RP, Atzín JA, Saldaña AK, Espinosa B, Urrea FJ, Alvarado VN, Lascurain R
Idioma: Español
Referencias bibliográficas: 59
Paginas: 280-287
Archivo PDF: 93.18 Kb.
RESUMEN
Durante la carcinogénesis ocurren modificaciones en los N- y O-glicanos. Estos cambios son debidos a las señales a las que son expuestas las células, lo que regula la expresión de enzimas encargadas de la biosíntesis de los glicanos. Esto genera nuevos epítopos o deja expuestos epítopos que en condiciones normales estaban ocultos, los cuales son reconocidos por elementos de la respuesta inmune que promueven o limitan el crecimiento del tumor. Entre los antígenos más importantes asociados a tumores están el sialil Lewis X, el antígeno T y el antígeno Tn. En esta revisión se hace mención de aquellos antígenos glicosilados relevantes en la progresión o el control de los tumores y los elementos de la respuesta inmune que participan.
REFERENCIAS (EN ESTE ARTÍCULO)
Suzuki T, Kitajima K, Inoue S, Inoue Y. N-glycosylation/deglycosylation as a mechanism for the post-translational modification/remodification of proteins. Glycoconj J 1995;12:183-193.
Varki A, Cummings R, EskoJ, Freeze H, Hart G, Marth J. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press;1999.p. 653.
Van den Steen, Rudd PM, Dwek RA, Opdenakker G. Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 1998;33:151-208.
Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1999;1473:67-95.
Löfling J, Holgersson J. Core saccharide dependence of sialyl Lewis X biosynthesis. Glycoconj J 2009;26:33-40.
Broquet P, Baubichon-Cortay H, George P, Louisot P. Glycoprotein sialyltransferases in eucaryotic cells. Int J Biochem 1991;23:385-389.
Dall’Olio F, Chiricolo M. Sialyltransferases in cancer. Glycoconj J 2001;18:841-850.
Malisan F, Testi R. GD3 ganglioside and apoptosis. Biochim Biophys Acta 2002;1585:179-187.
Schauer R, Kelm S, Reuter G, Roggentin P, Shaw L. Biochemistry and role of sialic acid. In: Rosemberg A, editor. Biology of sialic acid. New York: Plenum Press; 1995.p.7-67.
Manzi AE, Sjoberg ER, Diaz S, Varki A. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells. J Biol Chem 1990;265:13091-13103.
Varki A. Diversity in the sialic acid. Glycobiology 1992;2:25-40.
Varki NM, Varki A. Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 2007;87:851-857.
Hedlund M, Ng E, Varki A, Varki NM. a2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res 2008;68:388-394.
Mouritsen S, Meldal M, Christiansen-Brams I, Elsner H, Werdelin O. Attachment of oligosaccharides to peptide antigen profoundly affects binding to major histocompatibility complex class II molecules and peptide immunogenicity. Eur J Immunol 1994;24:1066-1072.
Couldrey C, Green JE. Metastases: the glycan connection. Breast Cancer Res 2000;2:321-323.
Laidler P, Lityñska A. Tumor cell N-glycans in metastasis. Acta Biochim Pol 1997;44:343-357.
Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 2004;4:45-60.
Yamashita Y, Chung YS, Horie R, Kannagi R, Sowa M. Alterations in gastric mucin with malignants transformation: novel pathway for mucin synthesis. J Natl Cancer Inst 1995;87:441-446.
Peracaula R, Barrabés S, Sarrats A, Rudd PM, de Llorens R. Altered glycosylation in tumours focused to cancer diagnosis. Dis Markers 2008;25:207-218.
Nicoll G, Avril T, Lock K, Furukawa K, Bovin N, Crocker PR. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur J Immunol 2003; 33:1642-1648.
Sheu BC, Chang WC, Cheng CY, Lin HH, Chang DY, Huang SC. Cytokine regulation networks in the cancer microenvironment. Front Biosci 2008;13:6255-6268.
Yao H, Guo L, Jiang BH, Luo J, Shi X. Oxidative stress and chromium(VI) carcinogenesis. J Environ Pathol Toxicol Oncol 2008;27:77-88.
Ko JH, Miyoshi E, Noda K, et ál. Regulation of the GnT-V promoter by transcription factor Ets-1 in various cancer cell lines. J Biol Chem 1999;274:22941-22948.
Zhang W, Revers L, Pierce M, Schachter H. Regulation of expression of the human beta-1,2-N-acetylglucosaminyltransferase II gene (MGAT2) by Ets transcription factors. Biochem J 2000;347(Pt 2):511-518.
Miyoshi E, Noda K, Yamaguchi Y, et ál. The alpha1-6-fucosyltransferase gene and its biological significance. Biochim Biophys Acta 1999;1473:9-20.
Gendler SJ. MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia 2001;6:339-353.
Stepensky D, Tzehoval E, Vadai E, Eisenbach L. O-glycosylated versus non-glycosylated MUC1-derived peptides as potential targets for cytotoxic immunotherapy of carcinoma. Clin Exp Immunol 2006; 143:139-149.
Reis CA, David L, Seixas M, Burchell J, Sobrinho-Simões M. Expression of fully and under-glycosylated forms of MUC1 mucin in gastric carcinoma. Int J Cancer 1998;79:402-410.
Ho SB, Kim YS. Carbohydrate antigens on cancer-associated mucin-like molecules. Semin Cancer Biol 1991;2:389-400.
Hanisch FG, Stadie TR, Deutzmann F, Peter-Katalinic J. MUC1 glycoforms in breast cancer-cell line T47D as a model for carcinoma-associated alterations of 0-glycosylation. Eur J Biochem 1996;236:318-327.
Matsushita Y, Cleary KR, Ota DM, Hoff SD, Irimura T. Sialyl-dimeric Lewis-X antigen expressed on mucin-like glycoproteins in colorectal cancer metastases. Lab Invest 1990;63:780-791.
Lloyd KO, Burchell J, Kudryashov V, Yin BW, Taylor-Papadimitriou J. Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J Biol Chem 1996;271:33325-33334.
Amaya S, Sasaki M, Watanabe Y, et ál. Expression of MUC1 and MUC2 and carbohydrate antigen Tn change during malignant transformation of biliary papillomatosis. Histopathology 2001;38:550-560.
Springer GF. T and Tn, general carcinoma autoantigens. Science 1984;224:1198-1206.
Xu Y, Sette A, Sidney J, Gendler SJ, Franco A. Tumor-associated carbohydrate antigens: a possible avenue for cancer prevention. Immunol Cell Biol 2005;83: 440-448.
Ugorski M, Laskowska A. Sialyl Lewisa: a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochem Pol 2002;49:303-311.
Singhal A, Hakomori S. Molecular changes in carbohydrate antigens associated with cancer. Bioessays 1990;12:223-230.
Yeh JC, Hiraoka N, Petryniak B, et ál. Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-N-acetylglucosaminyltransferase. Cell 2001;105:957-969.
Croce MV, Isla-Larrain M, Rabassa ME, et ál. Lewis X is highly expressed in normal tissues: a comparative immunohistochemical study and literature revision. Pathol Oncol Res 2007;13:130-138.
McDermott KM, Crocker PR, Harris A, et ál. Overexpression of MUC1 reconfigures the binding properties of tumor cells. Int J Cancer 2001;94:783-791.
Quinlin IS, Burnside JS, Dombrowski KE, Phillips CA, Dolby N, Wright SE. Context of MUC1 epitope: immunogenicity. Oncol Rep 2007;17:453-456.
Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 2004;23:77-99.
Ohyama C, Kanto S, Kato K, et ál. Natural killer cells attack tumor cells expressing high levels of sialyl Lewis X oligosaccharides. Proc Natl Acad Sci U S A 2002;99: 13789-13794.
Ohyama C, Tsuboi S, Fukuda M. Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. EMBO J 1999;18:1516-1525.
McNerlan SE, Rea IM, Alexander HD, Morris TC. Changes in natural killer cells, the CD57CD8 subset, and related cytokines in healthy aging. J Clin Immunol 1998;18:31-38.
Characiejus D, Pasukoniene V, Jonusauskaite R, et ál. Peripheral blood CD8highCD57+ lymphocyte levels may predict outcome in melanoma patients treated with adjuvant interferon-alpha. Anticancer Res 2008;28:1139-1142.
Okada T, Iiai T, Kawachi Y, et ál. Origin of CD57+ T cells which increase at tumour sites in patients with colorectal cancer. Clin Exp Immunol 1995;102:159-166.
Phillips JH, Chang C, Mattson J, Gumperz JE, Parham P, Lanier LL. CD94 and a novel associated protein (94AP) form a NK cell receptor involved in the recognition of HLA-A, HLA-B, and HLA-C allotypes. Immunity 1996;5:163-172.
Ding Y, Sumitran S, Holgersson J. Direct binding of purified HLA class I antigens by soluble NKG2/CD94 C-type lectins from natural killer cells. Scand J Immunol 1999;49:459-465.
Higai K, Ichikawa A, Matsumoto K. Binding of sialyl Lewis X antigen to lectin-like receptors on NK cells induces cytotoxicity and tyrosine phosphorylation of a 17-kDa protein. Biochim Biophys Acta 2006;1760: 1355-1363.
Nakakubo Y, Miyamoto M, Cho Y, et ál. Clinical significance of immune cell infiltration within gallbladder cancer. Br J Cancer 2003;89:1736-1742.
Jensen T, Galli-Stampino L, Mouritsen S, et ál. T cell recognition of Tn-glycosylated peptide antigens. Eur J Immunol 1996;26:1342-1349.
Galli-Stampino L, Meinjohanns E, Frische K, et ál. T-cell recognition of tumor-associated carbohydrates: the nature of the glycan moiety plays a decisive role in determining glycopeptide immunogenicity. Cancer Res 1997;57:3214-3222.
Tsuboi S, Fukuda M. Roles of O-linked oligosaccharides in immune responses. Bioessays 2001;23:46-53.
Hakomori S. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv Exp Med Biol 2001;491: 369-402.
Kuemmel A, Single K, Bittinger F, et ál. TA-MUC1 epitope in non-small cell lung cancer. Lung Cancer 2009;63:98-105.
Hanisch FG, Ninkovic T. Immunology of O-glycosylated proteins: approaches to the design of a MUC1 glycopeptide-based tumor vaccine. Curr Protein Pept Sci 2006;7:307-315.
Fernández-Rodríguez J, Dwir O, Alon R, Hansson GC. Tumor cell MUC1 and CD43 are glycosylated differently with sialyl-Lewis a and x epitopes and show variable interactions with E-selectin under physiological flow conditions. Glycoconj J 2001;18:925-930.
Fukuda M. Possible roles of tumor-associated carbohydrate antigens. Cancer Res 1996;56:2237-2244.