2022, Number 3
<< Back Next >>
Rev Cubana Med Trop 2022; 74 (3)
Oxidative distress and its molecular implication for some infectious diseases: A review
Gil VL, Gravier HR, Acosta SMA, Pérez ALJ, Garrido G
Language: Spanish
References: 78
Page:
PDF size: 619.10 Kb.
ABSTRACT
Introduction:
Reactive oxygen/nitrogen/sulfur species (RONSS) are continuously generated in the physiology of organisms. As part of the immune cell response to pathogens, they may increase and lead to oxidative stress, cytotoxicity and organ damage. Recognizing the molecular implications of RONSS is still a developing field of research.
Objective:
To describe the molecular aspects related to oxidative metabolism and some pathogens (viruses, parasites, bacteria and fungi) in relation to infections.
Methods:
Based on the search criteria, 520 documents were identified in LILACS, Science Direct, SciELO, EMBASE, PubMed and Infomed databases, using the search engines Google and Google Scholar. Of these, 78 documents published from 1980 to 2021 in Spanish or English and organized into seven subtopics were analyzed.
Information, analysis and synthesis:
Infectious agents and the host interact to produce RONSS that can overcome antioxidant defense systems influencing on oxidative stress. Biological processes associated with the redox state are related to the transcription factors Nrf2 and NF-κB. Both generate a cellular response between susceptibility and resistance to infectious agents, thus they can initiate or accelerate pathophysiological processes in the organism. In general, the redox response in infectious pathophysiology is interconnected with metabolic reprogramming, antimicrobial and inflammatory responses, and cellular or tissue dysfunction.
Conclusions:
Molecular redox events may be involved in various infectious diseases, where different associated responses or disorders mediate.
REFERENCES
Buettner G, Wagner B, Rodgers V. Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox. Environmen Cell Biochem Biophys. 2013[acceso 21/11/2021];67:477-83. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/22161621 1.
Bardaweel SK, Gul M, Alzweiri M, Ishaqat A, AL Salamat HA, Bashatwah RM. Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. The Eurasian Journal of Medicine. 2018;50(3):193.
Plotnikov EY, Pevzner IB, Zorova LD, Chernikov VP, Prusov AN, Kireev II, et al. Mitochondrial damage and mitochondria targeted antioxidant protection in LPS-induced acute kidney injury. Antioxidants. 2019;8:176. DOI:https://doi.org/10.3390/antiox80601763.
Yang S, Lian G. ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem. 2020[acceso 21/11/2021];467(1):1-12. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089381 4.
Sies H. Oxidative stress: Concept and some practical aspects. Antioxidants. 2020;9(9):852. DOI:https://doi.org/10.3390/antiox90908525.
Tafuri S, Cocchia N, Landolfi F, Lorio E, Ciani F. Chapter 8: Redoxomics and oxidative stress: From the basic research to the clinical practice. In: Ahmad R. (ed.) Free Radicals and diseases. Intech Open. 2016:149-69. DOI:https://doi.org/10.5772/645776.
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al7. . Oxidative stress, aging, and diseases. Clinical Interventions in Aging. 2018;13:757.
Maurya PK, Dua K (eds.) Role of Oxidative Stress in Pathophysiology of Diseases. Berlin: Springer; 2020.
Mannaa A, Hanisch FG. Redox proteomes in human physiology and disease mechanisms. J Proteome Res. 2019;19:1-17.
Costantini D. Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. J Exp Biol. 2019[acceso 21/11/2021];222(13):jeb194688. Disponible en: Disponible en: https://journals.biologists.com/jeb/article/222/13/jeb194688/2696 10.
Huang D, Jing G, Zhang L, Chen C, Zhu S. Interplay Among Hydrogen Sulfide, Nitric Oxide, Reactive Oxygen Species, and Mitochondrial DNA Oxidative Damage. Front Plant Sci. 2021[acceso 21/11/2021];12:701681. Disponible en: Disponible en: https://www.frontiersin.org/articles/10.3389/fpls.2021.701681/full 11.
Ramezani A, Nahad MP, Faghihloo E. The role of Nrf2 transcription factor in viral infection. J Cell Biochem. 2018;22:1-17.
Föller M, Lang F. Ion transport in eryptosis, the suicidal death of erythrocytes. Frontiers in Cell and Developmental Biology. 2020;8:597.
Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci USA. 2018;115:5839-48.
Ghezzi P, Jaquet V, Marcucci F, Schmidt H. The oxidative stress theory of disease: levels of evidence and epistemological aspects. Br J Pharmacol. 2017[acceso 21/11/2021];174(12):1784-96. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/27425643/ 15.
Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflammation Research. 2020;13:1057.
von Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann KD. Plasma Medicine: A field of applied redox biology. In Vivo. 2019[acceso 21/11/2021];33(4):1011-26. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/31280189/ 17.
Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discovery. 2020;6(1):1-22.
Spooner R, Yilmaz Ö. The role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci. 2011[acceso 21/11/2021];12(1):334-352. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039955/ 19.
Fernando V, Zheng X, Walia Y, Sharma V, Letson J, Furuta S. S-nitrosylation: An emerging paradigm of redox signaling. Antioxidants. 2019;8:404.
Atri C, Guerfali F, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 2018[acceso 21/11/2021];19(6):1801. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/29921749/ 21.
Silwal P, Kim JK, Kim YJ, Jo EK. Mitochondrial reactive oxygen species: double-edged weapon in host defense and pathological inflammation during infection. Frontiers in Immunology. 2020;11:1649.
Lee J, Song CH. Effect of Reactive Oxygen Species on the Endoplasmic Reticulum and Mitochondria during Intracellular Pathogen Infection of Mammalian Cells. Antioxidants. 2021;10(6):872.
Gomes MTR, Cerqueira DM, Guimarăes ES, Campos PC, Oliveira SC. Guanylate‐binding proteins at the crossroad of noncanonical inflammasome activation during bacterial infections. J Leukocyte Biology. 2019;106(3):553-62.
Warnatsch A, Tsourouktsoglou T, Branzk N, Wang Q, Reincke S, Herbst S, et al25. . Reactive oxygen species localization programs inflammation to clear microbes of different size. Immunity. 2017[acceso 21/11/2021];46:421-32. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/28314592/ 25.
Li Z, Xu X, Leng X, He M, Wang J, Cheng S, et al26. . Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Arch Virol. 2017;162(3):603-10.
Lam PL, Wong RM, Lam KH, Hung LK, Wong MM, Yung LH, et al27. . The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review. Chemico-Biological Interactions. 2020;320:109023.
Guo Y, Yu S, Zhang C, Kong A. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med. 2015[acceso 21/11/2021];88:337-349. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/26117320/ 28.
Sies H, Jones D. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020[acceso 21/11/2021];21(7):363-83. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/32231263/ 29.
Zhang Q, Cao X. Epigenetic regulation of the innate immune response to infection. Nature Reviews Immunology. 2019;19(7):417-32.
Okuda M, Li K, Beard M. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology. 2002[acceso 21/11/2021];122(2):366-75. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/11832451/ 31.
Qian X, Wu W, Hu H, Yu X, Wang S, Zhu J, et al32. . The role of reactive oxygen species derived from different NADPH oxidase isoforms and mitochondria in oxalate-induced oxidative stress and cell injury. Urolithiasis. 2022;50(2):149-58.
Oyinloye B, Adenowo A, Kappo A. Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals. 2015[acceso 21/11/2021];8(2):151-75. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/25850012/ 33.
Caetano F, da Silva C, Trindade L, Lopes de Brito C. Implications of oxidative stress on viral pathogenesis. Arch Virol. 2017;162:907-17.
Kim S, Park C, Jang H. Antibacterial strategies inspired by the oxidative stress and response networks. J Microbiol. 2019[acceso 21/11/2021];57:203-12. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/30806977/ 35.
Van Acker H, Coenye T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol. 2017[acceso 21/11/2021];25(6):456-66. Disponible en:Disponible en:https://pubmed.ncbi.nlm.nih.gov/28089288/ 36.
Sultana S, Foti A, Dahl J. Bacterial defense systems against the neutrophilic oxidant hypochlorous acid. Infect Immun. 2020[acceso 21/11/2021];88(7):e00964-19. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309615/ 37.
Palmer L, Skaar E. Transition metals and virulence in bacteria. Annu Rev Genet. 2016[acceso 21/11/2021];50:67-91. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/27617971/ 38.
Imlay J. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013[acceso 21/11/2021];11:443-54. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/23712352/ 39.
Pacl HT, Reddy VP, Saini V, Chinta KC, Steyn AJ. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis40. pathogenesis. Pathogens and Disease. 2018;76(5):fty036.
Bandouchova H, Pohanka M, Vlckova K, Damkova V, Peckova L, Sedlackova J, et al41. . Biochemical responses and oxidative stress in Francisella tularensis41. infection: a European brown hare model. Acta Vet Scand. 2011[acceso 21/11/2021];53(1):2. Disponible en: Disponible en: https://actavetscand.biomedcentral.com/articles/10.1186/1751-0147-53-2 41.
Victoria L, Gupta A, Gómez JL, Robledo J. Mycobacterium abscessus complex: a review of recent developments in an emerging pathogen. Frontiers in Cellular and Infection Microbiology. 2021;11:338.
Lee I, Yang C. Role of NADPH oxidase/ROS in proinflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol. 2012[acceso 21/11/2021];84(5):581-90. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/22587816/ 43.
Stevanin T, Laver J, Poole R, Moir J, Read R. Metabolism of nitric oxide by Neisseria meningitidis44. modifies release of NO-regulated cytokines and chemokines by human macrophages. Microbes Infect. 2007[acceso 21/11/2021];9(8):981-7. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/17544805/ 44.
Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, et al45. . Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: an emerging need for novel drug delivery systems. Chemico-Biological Interactions. 2019;299:168-78.
Kohanski M, DePristo M, Collins J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Molecular Cell. 2010[acceso 21/11/2021];37(3):311-20. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/20159551/ 46.
Zhao X, Drlica K. Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol. 2014[acceso 21/11/2021];21:1-6. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/25078317/ 47.
Dietl A, Maack C. Targeting mitochondrial calcium handling and reactive oxygen species in heart failure. Curr Heart Fail Rep. 2017[acceso 21/11/2021];14(4):338-49. Disponible en:Disponible en:https://pubmed.ncbi.nlm.nih.gov/28656516/ 48.
Dickson KB, Zhou J. Role of reactive oxygen species and iron in host defense against infection. Front Biosci. 2020 (Landmark Ed);25:1600-16.
Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends in Microbiology. 2022;30(7):679-92.
Nadhan R, Patra D, Krishnan N, Rajan A, Gopala S, Ravi D, et al51. . Perspectives on mechanistic implications of ROS inducers for targeting viral infections. Eur J Pharmacol. 2021[acceso 21/11/2021];890:173621. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/33068588/ 51.
Lee C. Therapeutic modulation of virus-induced oxidative stress via the Nrf2-dependent antioxidative pathway. Oxid Med Cell Longev. [acceso 21/11/2021];2018:6208067. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/30515256/ 52.
Yang T, Lai C, Shiu S. Japanese encephalitis virus down-regulates thioredoxin and induces ROS-mediated ASK1-ERK/p38 MAPK activation in human promonocyte cells. Microbes Infect. 2010[acceso 21/11/2021];12:643-51. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/20430109/ 53.
Moreno-Solís G, de la Torre-Aguilar M, Torres-Borrego J. Oxidative stress and inflammatory plasma biomarkers in respiratory syncytial virus bronchiolitis. Clin Respir J. 2017[acceso 21/11/2021];11(6):839-46. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/26663823/ 54.
Dhanwani R, Khan M, Alam S. Differential proteome analysis of Chikungunya virus infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics. 2011[acceso 21/11/2021];11:1936-51. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/21472854/ 55.
Cruz‐Gregorio A, Aranda‐Rivera AK. Redox‐sensitive signalling pathways regulated by human papillomavirus in HPV‐related cancers. Reviews in Medical Virology. 2021;31(6):e2230.
Shytaj IL, Lucic B, Forcato M, Penzo C, Billingsley J, Laketa V, et al57. . Alterations of redox and iron metabolism accompany the development of HIV latency. The EMBO Journal. 2020;39(9):e102209.
Ivanov AV, Valuev-Elliston VT, Tyurina DA, Ivanova ON, Kochetkov SN, Bartosch B, et al58. . Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget. 2017[acceso 21/11/2021];8:3895-3932. Disponible en: Disponible en: https://www.oncotarget.com/article/13904/text/ 58.
Xie WH, Ding J, Xie XX, Yang XH, Wu XF, Chen ZX, et al59. . Hepatitis B virus X protein promotes liver cell pyroptosis under oxidative stress through NLRP3 inflammasome activation. Inflammation Research. 2020;69(7):683-96.
Ng M, Lee J, Loke W. Does influenza A infection increase oxidative damage? Antioxid Redox Signal. 2014[acceso 21/11/2021];21(7):1025-31. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/24673169/ 60.
Checconi P, De Angelis M, Marcocci M, Fraternale A, Magnani M, Palamara A, et al61. . Redox-modulating agents in the treatment of viral infections. Int J Mol Sci. 2020[acceso 21/11/2021];21(11):4084. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312898/ 61.
Dertli R, Keskin M, Biyik M, Ataseven H, Polat H, Demir A, et al62. . Dynamic thiol-disulfide homeostasis is disturbed in hepatitis B virus-related chronic hepatitis and liver cirrhosis. Turkish J Medical Sciences. 2018;48(5):985-92.
Gong G, Waris G, Tanveer R, Siddiqui A. Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-κB. Proc Natl Acad Sci USA. 2001[acceso 21/11/2021];98(17):9599-9604. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55498/ 63.
Brewster LM, Hijmans JG, Bammert TD, Stockelman KA, Levy MAV, Greiner JJ, et al64. . Effects of HIV‐1 gp120 and TAT on Endothelial Microparticle Release and Oxidative Stress. The FASEB J. 2018;32:618-12.
Jiang Y, Scofield V, Yan M. Retrovirus-induced oxidative stress with neuroimmunodegeneration is suppressed by antioxidant treatment with a refined monosodium α-luminol (Galavit). J Virol. 2006[acceso 21/11/2021];80(9):4557-69. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472001/ 65.
Gilbert R. Mechanisms of disruption of fertility by infectious diseases of the reproductive tract. J Dairy Sci. 2019[acceso 21/11/2021];102:3754-65. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/30772031/ 66.
Köhler J, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med. 2014[acceso 21/11/2021];5(1):a019273. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/25367975/ 67.
Warris A, Ballou ER. Oxidative responses and fungal infection biology. In Seminars in Cell & Developmental Biology. 2019;89:34-46. [Academic Press].
Warris A, Ballou E. Oxidative responses and fungal infection biology. Semin Cell Dev Biol. 2019[acceso 21/11/2021];89:34-46. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/29522807/ 69.
Lushchak V. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol Part - C. Toxicol Pharmacol. 2011[acceso 21/11/2021];153(2):175-90. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/20959147/ 70.
Scarpelli P, Pecenin MF, Garcia CRS. Intracellular Ca2+ Signaling in Protozoan Parasites: An Overview with a Focus on Mitochondria. Int J Mol Sci. 2021;2:469. DOI: [url]https://doi.org/10.3390/ijms22010469[/url]
Vasquez M, Zuniga M, Rodriguez A. Oxidative Stress and Pathogenesis in Malaria. Frontiers in Cellular and Infection Microbiology. 2021;11:768182.
Turrens J. Oxidative stress and defenses: a target for the treatment of diseases caused by parasitic protozoa. Mol Aspects Med. 2004[acceso 21/11/2021];25(1-2):211-20. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/15051329/ 73.
Sorci G, Faivre B. Inflammation and oxidative stress in vertebrate host - parasite systems. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009[acceso 21/11/2021];364(1513):71-83. Disponible en: Disponible en: https://hal.archives-ouvertes.fr/hal-00356762/ 74.
Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: key regulators in vascular health and diseases. British J Pharmacology. 2018;175(8):1279-92.
Uchida T, Sakashita Y, Kitahata K, Yamashita Y, Tomida C, Kimori Y, et al76. . Reactive oxygen species upregulate expression of muscle atrophy-associated ubiquitin ligase Cbl-b in rat L6 skeletal muscle cells. American J Physiology-Cell Physiology. 2018;314(6):C721-C731.
Paiva C, Medei E, Bozza M. ROS and Trypanosoma cruzi77. : fuel to infection, poison to the heart. PLoS Pathog. 2018[acceso 21/11/2021];14(4):e1006928. Disponible en: Disponible en: https://europepmc.org/article/pmc/5908069 77.
Kaufmann SH, Dorhoi A, Hotchkiss RS, Bartenschlager R. Host-directed therapies for bacterial and viral infections. Nature reviews Drug Discovery. 2018;17(1):35-56.