2022, Número 3
<< Anterior Siguiente >>
Rev Cubana Med Trop 2022; 74 (3)
El distrés oxidativo y sus implicaciones moleculares en algunas enfermedades infecciosas: una revisión
Gil VL, Gravier HR, Acosta SMA, Pérez ALJ, Garrido G
Idioma: Español
Referencias bibliográficas: 78
Paginas:
Archivo PDF: 619.10 Kb.
RESUMEN
Introducción:
Las especies reactivas de oxígeno, nitrógeno y azufre (ERONS) se generan continuamente en la fisiología de los organismos. Como parte de la respuesta de las células inmunitarias frente a los patógenos podrían aumentar y producir distrés oxidativo, citotoxicidad y daño de los órganos. El reconocimiento de las implicaciones moleculares de las ERONS todavía es un campo de investigación en desarrollo.
Objetivo:
Describir los aspectos moleculares relacionados con el metabolismo oxidativo y algunos patógenos (virus, parásitos, bacterias y hongos) en relación con las infecciones.
Métodos:
Se identificaron 520 documentos relacionados con los criterios de búsqueda en las bases de datos LILACS, Science Direct, SciELO, EMBASE, PubMed e Infomed, con los buscadores Google y Google académico. De estos, fueron analizados 78 documentos publicados a partir de 1980 al 2021 en español o inglés y organizados en 7 subtemas.
Información, análisis y síntesis:
Los agentes infecciosos y el hospedero interactúan produciendo ERONS que pueden superar los sistemas de defensa antioxidantes e influyen en el distrés oxidativo. Los procesos biológicos asociados al estado redox se relacionan con los factores de transcripción Nrf2 y NF-κB. Ambos permiten una respuesta celular entre la susceptibilidad y la resistencia a los agentes infecciosos, por lo que pueden iniciar o acelerar procesos fisiopatológicos en el organismo. En general la respuesta redox en la fisiopatología infecciosa está interconectada con la reprogramación metabólica, las respuestas antimicrobianas e inflamatorias y la disfunción celular o de tejido.
Conclusiones:
Los eventos moleculares redox pueden participar en diversas enfermedades infecciosas, mediando diferentes respuestas o trastornos asociados.
REFERENCIAS (EN ESTE ARTÍCULO)
Buettner G, Wagner B, Rodgers V. Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox. Environmen Cell Biochem Biophys. 2013[acceso 21/11/2021];67:477-83. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/22161621 1.
Bardaweel SK, Gul M, Alzweiri M, Ishaqat A, AL Salamat HA, Bashatwah RM. Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. The Eurasian Journal of Medicine. 2018;50(3):193.
Plotnikov EY, Pevzner IB, Zorova LD, Chernikov VP, Prusov AN, Kireev II, et al. Mitochondrial damage and mitochondria targeted antioxidant protection in LPS-induced acute kidney injury. Antioxidants. 2019;8:176. DOI:https://doi.org/10.3390/antiox80601763.
Yang S, Lian G. ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem. 2020[acceso 21/11/2021];467(1):1-12. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089381 4.
Sies H. Oxidative stress: Concept and some practical aspects. Antioxidants. 2020;9(9):852. DOI:https://doi.org/10.3390/antiox90908525.
Tafuri S, Cocchia N, Landolfi F, Lorio E, Ciani F. Chapter 8: Redoxomics and oxidative stress: From the basic research to the clinical practice. In: Ahmad R. (ed.) Free Radicals and diseases. Intech Open. 2016:149-69. DOI:https://doi.org/10.5772/645776.
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al7. . Oxidative stress, aging, and diseases. Clinical Interventions in Aging. 2018;13:757.
Maurya PK, Dua K (eds.) Role of Oxidative Stress in Pathophysiology of Diseases. Berlin: Springer; 2020.
Mannaa A, Hanisch FG. Redox proteomes in human physiology and disease mechanisms. J Proteome Res. 2019;19:1-17.
Costantini D. Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. J Exp Biol. 2019[acceso 21/11/2021];222(13):jeb194688. Disponible en: Disponible en: https://journals.biologists.com/jeb/article/222/13/jeb194688/2696 10.
Huang D, Jing G, Zhang L, Chen C, Zhu S. Interplay Among Hydrogen Sulfide, Nitric Oxide, Reactive Oxygen Species, and Mitochondrial DNA Oxidative Damage. Front Plant Sci. 2021[acceso 21/11/2021];12:701681. Disponible en: Disponible en: https://www.frontiersin.org/articles/10.3389/fpls.2021.701681/full 11.
Ramezani A, Nahad MP, Faghihloo E. The role of Nrf2 transcription factor in viral infection. J Cell Biochem. 2018;22:1-17.
Föller M, Lang F. Ion transport in eryptosis, the suicidal death of erythrocytes. Frontiers in Cell and Developmental Biology. 2020;8:597.
Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci USA. 2018;115:5839-48.
Ghezzi P, Jaquet V, Marcucci F, Schmidt H. The oxidative stress theory of disease: levels of evidence and epistemological aspects. Br J Pharmacol. 2017[acceso 21/11/2021];174(12):1784-96. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/27425643/ 15.
Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflammation Research. 2020;13:1057.
von Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann KD. Plasma Medicine: A field of applied redox biology. In Vivo. 2019[acceso 21/11/2021];33(4):1011-26. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/31280189/ 17.
Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discovery. 2020;6(1):1-22.
Spooner R, Yilmaz Ö. The role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci. 2011[acceso 21/11/2021];12(1):334-352. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039955/ 19.
Fernando V, Zheng X, Walia Y, Sharma V, Letson J, Furuta S. S-nitrosylation: An emerging paradigm of redox signaling. Antioxidants. 2019;8:404.
Atri C, Guerfali F, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 2018[acceso 21/11/2021];19(6):1801. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/29921749/ 21.
Silwal P, Kim JK, Kim YJ, Jo EK. Mitochondrial reactive oxygen species: double-edged weapon in host defense and pathological inflammation during infection. Frontiers in Immunology. 2020;11:1649.
Lee J, Song CH. Effect of Reactive Oxygen Species on the Endoplasmic Reticulum and Mitochondria during Intracellular Pathogen Infection of Mammalian Cells. Antioxidants. 2021;10(6):872.
Gomes MTR, Cerqueira DM, Guimarães ES, Campos PC, Oliveira SC. Guanylate‐binding proteins at the crossroad of noncanonical inflammasome activation during bacterial infections. J Leukocyte Biology. 2019;106(3):553-62.
Warnatsch A, Tsourouktsoglou T, Branzk N, Wang Q, Reincke S, Herbst S, et al25. . Reactive oxygen species localization programs inflammation to clear microbes of different size. Immunity. 2017[acceso 21/11/2021];46:421-32. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/28314592/ 25.
Li Z, Xu X, Leng X, He M, Wang J, Cheng S, et al26. . Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Arch Virol. 2017;162(3):603-10.
Lam PL, Wong RM, Lam KH, Hung LK, Wong MM, Yung LH, et al27. . The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review. Chemico-Biological Interactions. 2020;320:109023.
Guo Y, Yu S, Zhang C, Kong A. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med. 2015[acceso 21/11/2021];88:337-349. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/26117320/ 28.
Sies H, Jones D. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020[acceso 21/11/2021];21(7):363-83. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/32231263/ 29.
Zhang Q, Cao X. Epigenetic regulation of the innate immune response to infection. Nature Reviews Immunology. 2019;19(7):417-32.
Okuda M, Li K, Beard M. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology. 2002[acceso 21/11/2021];122(2):366-75. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/11832451/ 31.
Qian X, Wu W, Hu H, Yu X, Wang S, Zhu J, et al32. . The role of reactive oxygen species derived from different NADPH oxidase isoforms and mitochondria in oxalate-induced oxidative stress and cell injury. Urolithiasis. 2022;50(2):149-58.
Oyinloye B, Adenowo A, Kappo A. Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals. 2015[acceso 21/11/2021];8(2):151-75. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/25850012/ 33.
Caetano F, da Silva C, Trindade L, Lopes de Brito C. Implications of oxidative stress on viral pathogenesis. Arch Virol. 2017;162:907-17.
Kim S, Park C, Jang H. Antibacterial strategies inspired by the oxidative stress and response networks. J Microbiol. 2019[acceso 21/11/2021];57:203-12. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/30806977/ 35.
Van Acker H, Coenye T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol. 2017[acceso 21/11/2021];25(6):456-66. Disponible en:Disponible en:https://pubmed.ncbi.nlm.nih.gov/28089288/ 36.
Sultana S, Foti A, Dahl J. Bacterial defense systems against the neutrophilic oxidant hypochlorous acid. Infect Immun. 2020[acceso 21/11/2021];88(7):e00964-19. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309615/ 37.
Palmer L, Skaar E. Transition metals and virulence in bacteria. Annu Rev Genet. 2016[acceso 21/11/2021];50:67-91. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/27617971/ 38.
Imlay J. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013[acceso 21/11/2021];11:443-54. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/23712352/ 39.
Pacl HT, Reddy VP, Saini V, Chinta KC, Steyn AJ. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis40. pathogenesis. Pathogens and Disease. 2018;76(5):fty036.
Bandouchova H, Pohanka M, Vlckova K, Damkova V, Peckova L, Sedlackova J, et al41. . Biochemical responses and oxidative stress in Francisella tularensis41. infection: a European brown hare model. Acta Vet Scand. 2011[acceso 21/11/2021];53(1):2. Disponible en: Disponible en: https://actavetscand.biomedcentral.com/articles/10.1186/1751-0147-53-2 41.
Victoria L, Gupta A, Gómez JL, Robledo J. Mycobacterium abscessus complex: a review of recent developments in an emerging pathogen. Frontiers in Cellular and Infection Microbiology. 2021;11:338.
Lee I, Yang C. Role of NADPH oxidase/ROS in proinflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol. 2012[acceso 21/11/2021];84(5):581-90. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/22587816/ 43.
Stevanin T, Laver J, Poole R, Moir J, Read R. Metabolism of nitric oxide by Neisseria meningitidis44. modifies release of NO-regulated cytokines and chemokines by human macrophages. Microbes Infect. 2007[acceso 21/11/2021];9(8):981-7. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/17544805/ 44.
Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, et al45. . Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: an emerging need for novel drug delivery systems. Chemico-Biological Interactions. 2019;299:168-78.
Kohanski M, DePristo M, Collins J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Molecular Cell. 2010[acceso 21/11/2021];37(3):311-20. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/20159551/ 46.
Zhao X, Drlica K. Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol. 2014[acceso 21/11/2021];21:1-6. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/25078317/ 47.
Dietl A, Maack C. Targeting mitochondrial calcium handling and reactive oxygen species in heart failure. Curr Heart Fail Rep. 2017[acceso 21/11/2021];14(4):338-49. Disponible en:Disponible en:https://pubmed.ncbi.nlm.nih.gov/28656516/ 48.
Dickson KB, Zhou J. Role of reactive oxygen species and iron in host defense against infection. Front Biosci. 2020 (Landmark Ed);25:1600-16.
Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends in Microbiology. 2022;30(7):679-92.
Nadhan R, Patra D, Krishnan N, Rajan A, Gopala S, Ravi D, et al51. . Perspectives on mechanistic implications of ROS inducers for targeting viral infections. Eur J Pharmacol. 2021[acceso 21/11/2021];890:173621. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/33068588/ 51.
Lee C. Therapeutic modulation of virus-induced oxidative stress via the Nrf2-dependent antioxidative pathway. Oxid Med Cell Longev. [acceso 21/11/2021];2018:6208067. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/30515256/ 52.
Yang T, Lai C, Shiu S. Japanese encephalitis virus down-regulates thioredoxin and induces ROS-mediated ASK1-ERK/p38 MAPK activation in human promonocyte cells. Microbes Infect. 2010[acceso 21/11/2021];12:643-51. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/20430109/ 53.
Moreno-Solís G, de la Torre-Aguilar M, Torres-Borrego J. Oxidative stress and inflammatory plasma biomarkers in respiratory syncytial virus bronchiolitis. Clin Respir J. 2017[acceso 21/11/2021];11(6):839-46. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/26663823/ 54.
Dhanwani R, Khan M, Alam S. Differential proteome analysis of Chikungunya virus infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics. 2011[acceso 21/11/2021];11:1936-51. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/21472854/ 55.
Cruz‐Gregorio A, Aranda‐Rivera AK. Redox‐sensitive signalling pathways regulated by human papillomavirus in HPV‐related cancers. Reviews in Medical Virology. 2021;31(6):e2230.
Shytaj IL, Lucic B, Forcato M, Penzo C, Billingsley J, Laketa V, et al57. . Alterations of redox and iron metabolism accompany the development of HIV latency. The EMBO Journal. 2020;39(9):e102209.
Ivanov AV, Valuev-Elliston VT, Tyurina DA, Ivanova ON, Kochetkov SN, Bartosch B, et al58. . Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget. 2017[acceso 21/11/2021];8:3895-3932. Disponible en: Disponible en: https://www.oncotarget.com/article/13904/text/ 58.
Xie WH, Ding J, Xie XX, Yang XH, Wu XF, Chen ZX, et al59. . Hepatitis B virus X protein promotes liver cell pyroptosis under oxidative stress through NLRP3 inflammasome activation. Inflammation Research. 2020;69(7):683-96.
Ng M, Lee J, Loke W. Does influenza A infection increase oxidative damage? Antioxid Redox Signal. 2014[acceso 21/11/2021];21(7):1025-31. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/24673169/ 60.
Checconi P, De Angelis M, Marcocci M, Fraternale A, Magnani M, Palamara A, et al61. . Redox-modulating agents in the treatment of viral infections. Int J Mol Sci. 2020[acceso 21/11/2021];21(11):4084. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312898/ 61.
Dertli R, Keskin M, Biyik M, Ataseven H, Polat H, Demir A, et al62. . Dynamic thiol-disulfide homeostasis is disturbed in hepatitis B virus-related chronic hepatitis and liver cirrhosis. Turkish J Medical Sciences. 2018;48(5):985-92.
Gong G, Waris G, Tanveer R, Siddiqui A. Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-κB. Proc Natl Acad Sci USA. 2001[acceso 21/11/2021];98(17):9599-9604. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55498/ 63.
Brewster LM, Hijmans JG, Bammert TD, Stockelman KA, Levy MAV, Greiner JJ, et al64. . Effects of HIV‐1 gp120 and TAT on Endothelial Microparticle Release and Oxidative Stress. The FASEB J. 2018;32:618-12.
Jiang Y, Scofield V, Yan M. Retrovirus-induced oxidative stress with neuroimmunodegeneration is suppressed by antioxidant treatment with a refined monosodium α-luminol (Galavit). J Virol. 2006[acceso 21/11/2021];80(9):4557-69. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472001/ 65.
Gilbert R. Mechanisms of disruption of fertility by infectious diseases of the reproductive tract. J Dairy Sci. 2019[acceso 21/11/2021];102:3754-65. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/30772031/ 66.
Köhler J, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med. 2014[acceso 21/11/2021];5(1):a019273. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/25367975/ 67.
Warris A, Ballou ER. Oxidative responses and fungal infection biology. In Seminars in Cell & Developmental Biology. 2019;89:34-46. [Academic Press].
Warris A, Ballou E. Oxidative responses and fungal infection biology. Semin Cell Dev Biol. 2019[acceso 21/11/2021];89:34-46. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/29522807/ 69.
Lushchak V. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol Part - C. Toxicol Pharmacol. 2011[acceso 21/11/2021];153(2):175-90. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/20959147/ 70.
Scarpelli P, Pecenin MF, Garcia CRS. Intracellular Ca2+ Signaling in Protozoan Parasites: An Overview with a Focus on Mitochondria. Int J Mol Sci. 2021;2:469. DOI: [url]https://doi.org/10.3390/ijms22010469[/url]
Vasquez M, Zuniga M, Rodriguez A. Oxidative Stress and Pathogenesis in Malaria. Frontiers in Cellular and Infection Microbiology. 2021;11:768182.
Turrens J. Oxidative stress and defenses: a target for the treatment of diseases caused by parasitic protozoa. Mol Aspects Med. 2004[acceso 21/11/2021];25(1-2):211-20. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/15051329/ 73.
Sorci G, Faivre B. Inflammation and oxidative stress in vertebrate host - parasite systems. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009[acceso 21/11/2021];364(1513):71-83. Disponible en: Disponible en: https://hal.archives-ouvertes.fr/hal-00356762/ 74.
Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: key regulators in vascular health and diseases. British J Pharmacology. 2018;175(8):1279-92.
Uchida T, Sakashita Y, Kitahata K, Yamashita Y, Tomida C, Kimori Y, et al76. . Reactive oxygen species upregulate expression of muscle atrophy-associated ubiquitin ligase Cbl-b in rat L6 skeletal muscle cells. American J Physiology-Cell Physiology. 2018;314(6):C721-C731.
Paiva C, Medei E, Bozza M. ROS and Trypanosoma cruzi77. : fuel to infection, poison to the heart. PLoS Pathog. 2018[acceso 21/11/2021];14(4):e1006928. Disponible en: Disponible en: https://europepmc.org/article/pmc/5908069 77.
Kaufmann SH, Dorhoi A, Hotchkiss RS, Bartenschlager R. Host-directed therapies for bacterial and viral infections. Nature reviews Drug Discovery. 2018;17(1):35-56.