2023, Number 1
Diversity and structural complexity of the bacterial flagellum
Language: Spanish
References: 120
Page: 1-20
PDF size: 458.84 Kb.
ABSTRACT
This review explores the structure and biogenesis of bacterial flagella, highlighting their structural diversity in various bacterial models. It delves into how these structures, originating from a conserved structural flagellar nucleus (NEFC), have evolved to adapt to different functions and capabilities. This diversity plays a crucial role in each species’ ability to thrive in specific ecological niches. The bacterial flagellar motor is a complex apparatus comprising a rotor and a stator embedded in the cell envelope. Recent advancements have revealed the incorporation of new components that enhance its functionality. These components include additional rings or discs beyond those found in the NEFC. These additional elements cover or interact with the basal body and stator, resulting in greater efficiency and rotational speed by facilitating the recruitment of more stators or stabilizing their connection to the rotor. Furthermore, variations are observed in the hooks or filaments, with modified flagellins that possess unique enzymatic properties. The increasing number of bacterial models studied, coupled with advanced visualization techniques such as cryo-microscopy, has unveiled the remarkable diversity in flagellar architecture. This, in turn, has led to a paradigm shift in our understanding of the assembly and operation of the flagellar motor. In conclusion, the field of bacterial flagellum research is experiencing a period of rapid progress, driven by a growing body of evidence and the development of innovative visualization techniques. This progress enhances our understanding of this vital bacterial structure and its role in bacterial adaptation and function.REFERENCES
Abrusci, P., Vergara-Irigaray, M., Johnson, S., Beeby, M. D.,Hendrixson, D. R., Roversi, P., Friede, M. E., Deane, J. E.,Jensen, G. J., Tang, C. M. & Lea, S. M. (2013). Architectureof the major component of the type III secretion systemexport apparatus. Nature Structural & Molecular Biology, 20(1), 99-106. https://doi.org/10.1038/nsmb.2452.
Bange, G., Kümmerer, N., Engel, C., Bozkurt, G., Wild, K. &Sinning, I. (2010). FlhA provides the adaptor for coordinateddelivery of late flagella building blocks to the type IIIsecretion system. Proceedings of the National Academyof Sciences of the United States of America, 107(25),11295–11300. https://doi.org/10.1073/pnas.1001383107.
Beeby, M., Ribardo, D. A., Brennan, C. A., Ruby, E. G.,Jensen, G. J. & Hendrixson, D. R. (2016). Diverse hightorquebacterial flagellar motors assemble wider statorrings using a conserved protein scaffold. Proceedings ofthe National Academy of Sciences of the United States ofAmerica, 113(13), E1917-E1926. https://doi.org/10.1073/pnas.1518952113.
Deakin, W. J., Parker, V. E., Wright, E. L., Ashcroft, K. J., Loake,G. J. & Shaw, C. H. (1999). Agrobacterium tumefacienspossesses a fourth flagellin gene located in a large genecluster concerned with flagellar structure, assembly andmotility. Microbiology, 145(6), 1397–1407. https://doi.org/10.1099/13500872-145-6-1397.
Deme, J. C., Johnson, S., Vickery, O., Muellbauer, A.,Monkhouse, H., Griffiths, T., James, R. H., Berks, B.C., Coulton, J. W., Stansfeld, P. J. & Lea, S. M. (2020).Structures of the stator complex that drives rotation of thebacterial flagellum. Nature Microbiology, 5, 1553-15564.https://doi.org/10.1038/s41564-020-0788-8.
Eckhard, U., Bandukwala, H., Mansfield, M. J., Marino, G.,Cheng, J., Wallace, I., Holyoak, T., Charles, T. C., Austin,J., Overall, C. M. & Doxey, A. C. (2017). Discovery ofa proteolytic flagellin family in diverse bacterial phylathat assembles enzymatically active flagella. NatureCommunications, 8(521), 1-9. https://doi.org/10.1038/s41467-017-00599-0.
Fabela, S., Domenzain, C., Mora, J. la, Osorio, A., Ramírez-Cabrera, V., Poggio, S., Dreyfus, G. & Camarena, L.(2013). A distant homologue of the FlgT protein interactswith MotB and FliL and is essential for flagellar rotationin Rhodobacter sphaeroides. Journal of Bacteriology,195(23), 5285–5296. https://doi.org/10.1128/jb.00760-13.
Fabiani, F. D., Renault, T. T., Peters, B., Dietsche, T., Gálvez,E. J., Guse, A., Freier, K., Charpentier, E., Strowig, T.,Franz-Wachtel, M., Macek, B., Wagner, S., Hensel, M.& Erhardt, M. (2017). A flagellum-specific chaperonefacilitates assembly of the core type III export apparatusof the bacterial flagellum. PLOS Biology, 15(8), e2002267.https://doi.org/10.1371/journal.pbio.2002267.
Fahrner, K. A., Block, S. M., Krishnaswamy, S., Parkinson, J.S. & Berg, H. C. (1994). A Mutant Hook-associated Protein(HAP3) Facilitates Torsionally Induced Transformationsof the Flagellar Filament of Escherichia coli. Journalof Molecular Biology, 238(2), 173–186. https://doi.org/10.1006/jmbi.1994.1279.
Faulds-Pain, A., Birchall, C., Aldridge, C., Smith, W. D.,Grimaldi, G., Nakamura, S., Miyata, T., Gray, J., Li, G.,Tang, J. X., Namba, K., Minamino, T. & Aldridge, P. D.(2011). Flagellin redundancy in Caulobacter crescentus andits implications for flagellar filament assembly. Journal ofBacteriology, 193(11), 2695–2707. https://doi.org/10.1128/jb.01172-10.
García-Ramos, M., Mora, J. de la, Ballado, T., Camarena,L. & Dreyfus, G. (2021). Modulation of the EnzymaticActivity of the Flagellar Lytic Transglycosylase SltF byRod Components and the Scaffolding Protein FlgJ inRhodobacter sphaeroides. Journal of Bacteriology, 203(20),e0037221. https://doi.org/10.1128/jb.00372-21.
Gibson, K. H., Trajtenberg, F., Wunder, E. A., Brady, M. R.,Martin, F. S., Mechaly, A., Shang, Z., Liu, J., Picardeau,M., Ko, A., Buschiazzo, A. & Sindelar, C. V. (2020). Anasymmetric sheath controls flagellar supercoiling andmotility in the Leptospira spirochete. eLife, 9(e53672),1-24. https://doi.org/10.7554/elife.53672.
González-Pedrajo, B., Mora, J. de la, Ballado, T., Camarena, L.& Dreyfus, G. (2002). Characterization of the flgG operonof Rhodobacter sphaeroides WS8 and its role in flagellumbiosynthesis. Biochimica et Biophysica Acta (BBA) - GeneStructure and Expression, 1579(1), 55–63. https://doi.org/10.1016/s0167-4781(02)00504-3.
Henderson, L. D., Matthews-Palmer, T. R., Gulbronson,C. J., Ribardo, D. A., Beeby, M. & Hendrixson, D. R.(2020). Diversification of Campylobacter jejuni FlagellarC-Ring Composition Impacts Its Structure and Functionin Motility, Flagellar Assembly, and Cellular Processes.mBio, 11(e02286-19), 1-19. https://doi.org/10.1128/mbio.02286-19.
Inoue, Y., Ogawa, Y., Kinoshita, M., Terahara, N., Shimada,M., Kodera, N., Ando, T., Namba, K., Kitao, A., Imada,K. & Minamino, T. (2019). Structural Insights into theSubstrate Specificity Switch Mechanism of the Type IIIProtein Export Apparatus. Structure, 27(6), 965-976.e6.https://doi.org/10.1016/j.str.2019.03.017.
Kaplan, M., Oikonomou, C. M., Wood, C. R., Chreifi, G.,Subramanian, P., Ortega, D. R., Chang, Y., Beeby, M.,Shaffer, C. L. & Jensen, G. J. (2022). Novel transientcytoplasmic rings stabilize assembling bacterial flagellarmotors. The EMBO Journal, 41(e109523), 1-15. https://doi.org/10.15252/embj.2021109523.
Kuhlen, L., Abrusci, P., Johnson, S., Gault, J., Deme, J., Caesar,J., Dietsche, T., Mebrhatu, M. T., Ganief, T., Macek, B.,Wagner, S., Robinson, C. V. & Lea, S. M. (2018). Structureof the core of the type III secretion system export apparatus.Nature Structural & Molecular Biology, 25(7), 583–590.https://doi.org/10.1038/s41594-018-0086-9.
Liu, J., Lin, T., Botkin, D. J., McCrum, E., Winkler, H. & Norris,S. J. (2009). Intact flagellar motor of Borrelia burgdorferirevealed by cryo-electron tomography: evidence for statorring curvature and rotor/C-ring assembly flexion. Journal ofBacteriology, 191(16), 5026–5036. https://doi.org/10.1128/jb.00340-09.
Mariano, G., Faba-Rodriguez, R., Bui, S., Zhao, W., Ross, J.,Tzokov, S. B. & Bergeron, J. R. C. (2022). Oligomerizationof the FliF Domains Suggests a Coordinated Assemblyof the Bacterial Flagellum MS Ring. Frontiers inMicrobiology, 12(781960), 1-12. https://doi.org/10.3389/fmicb.2021.781960.61. Martínez, R. M., Dharmasena, M. N., Kirn, T. J. & Taylor, R. K.(2009). Characterization of two outer membrane proteins,FlgO and FlgP, that influence Vibrio cholerae motility.Journal of Bacteriology, 191(18), 5669–5679. https://doi.org/10.1128/jb.00632-09.
Miller, M. R., Miller, K. A., Bian, J., James, M. E., Zhang, S.,Lynch, M. J., Callery, P. S., Hettick, J. M., Cockburn, A., Liu,J., Li, C., Crane, B. R. & Charon, N. W. (2016). Spirochaeteflagella hook proteins self-catalyse a lysinoalanine covalentcrosslink for motility. Nature Microbiology, 1(16134), 1-8.https://doi.org/10.1038/nmicrobiol.2016.134.
Moon, K., Zhao, X., Xu, H., Liu, J. & Motaleb, M. A. (2018).A Tetratricopeptide Repeat Domain Protein has ProfoundEffects on Assembly of Periplasmic Flagella, Morphology,and Motility of the Lyme disease spirochete Borreliaburgdorferi. Molecular Microbiology, 110(4), 634–647.https://doi.org/10.1111/mmi.14121.
Moon, K., Zhao, X., Manne, A., Wang, J., Yu, Z., Liu, J. &Motaleb, M. A. (2016). Spirochetes flagellar collar proteinFlbB has astounding effects in orientation of periplasmicflagella, bacterial shape, motility, and assembly of motorsin Borrelia burgdorferi. Molecular Microbiology, 102(2),336–348. https://doi.org/10.1111/mmi.13463.
Mot, D. R. & Vanderleyden, J. (1994). The C-terminal sequenceconservation between OmpA-related outer membraneproteins and MotB suggests a common function in bothGram-positive and Gram-negative bacteria, possibly inthe interaction of these domains with peptidoglycan.Molecular Microbiology, 12(2), 333-334. https://doi.org/10.1111/j.1365-2958.1994.tb00431.x.
Nakane, T., Kotecha, A., Sente, A., McMullan, G., Masiulis,S., Brown, P. M. G. E., Grigoras, I. T., Malinauskaite, L.,Malinauskas, T., Miehling, J., Uchański, T., Yu, L., Karia,D., Pechnikova, E. V., Jong, E. de, Keizer, J., Bischoff, M.,McCormack, J., Tiemeijer, P., Hardwick, S. W., Chirgadze,D. Y., Murshudov, G., Aricescu, A. R. & Scheres, S. H.W. (2020). Single-particle cryo-EM at atomic resolution.Nature, 587(7832), 152–156. https://doi.org/10.1038/s41586-020-2829-0.
Samatey, F. A., Matsunami, H., Imada, K., Nagashima, S.,Shaikh, T. R., Thomas, D. R., Chen, J. Z., DeRosier, D. J.,Kitao, A. & Namba, K. (2004). Structure of the bacterialflagellar hook and implication for the molecular universaljoint mechanism. Nature, 431(7012), 1062–1068. https://doi.org/10.1038/nature02997.
Scharf, B., Schuster-Wolff-Buhring, H., Rachel, R. &Schmitt, R. (2001). Mutational Analysis of the Rhizobiumlupini H13-3 and Sinorhizobium meliloti FlagellinGenes: Importance of Flagellin A for Flagellar FilamentStructure and Transcriptional Regulation. Journal ofBacteriology, 183(18), 5334–5342. https://doi.org/10.1128/jb.183.18.5334-5342.2001.
Tachiyama, S., Chan, K. L., Liu, X., Hathroubi, S., Peterson,B., Khan, M. F., Ottemann, K. M., Liu, J. & Roujeinikova,A. (2022). The flagellar motor protein FliL forms a scaffoldof circumferentially positioned rings required for statoractivation. Proceedings of the National Academy of Sciencesof the United States of America, 119(4), e2118401119.https://doi.org/10.1073/pnas.2118401119.
Takekawa, N., Kawamoto, A., Sakuma, M., Kato, T., Kojima,S., Kinoshita, M., Minamino, T., Namba, K., Homma, M.& Imada, K. (2021). Two Distinct Conformations in 34 FliFSubunits Generate Three Different Symmetries within theFlagellar MS-Ring. mBio, 12(2), e03199-20. https://doi.org/10.1128/mbio.03199-20.
Xue, C., Lam, K. H., Zhang, H., Sun, K., Lee, S. H., Chen, X.& Au, S. W. N. (2018). Crystal structure of the FliF–FliGcomplex from Helicobacter pylori yields insight into theassembly of the motor MS–C ring in the bacterial flagellum.Journal of Biological Chemistry, 293(6), 2066–2078.https://doi.org/10.1074/jbc.M117.797936.
Zhu, S., Nishikino, T., Takekawa, N., Terashima, H., Kojima, S.,Imada, K., Homma, M. & Liu, J. (2019). In situ Structureof the Vibrio Polar Flagellum Reveals a Distinct OuterMembrane Complex and Its Specific Interaction with theStator. Journal of Bacteriology, 202(4), 1-12. https://doi.org/10.1128/jb.00592-19