2023, Número 1
Diversidad y complejidad estructural del flagelo bacteriano
Idioma: Español
Referencias bibliográficas: 120
Paginas: 1-20
Archivo PDF: 458.84 Kb.
RESUMEN
Esta revisión muestra la estructura y biogénesis del flagelo bacteriano y su diversidad estructural en numerosos modelos bacterianos. Se expone, cómo a partir de un núcleo estructural flagelar conservado (NEFC), se han diversificado las estructuras que modifican su capacidad y función. Esta variabilidad se sabe, participa en la habilidad de adaptación de cada especie a un nicho específico. El motor flagelar bacteriano es una estructura compleja constituida por un rotor y un estator, los cuales se encuentran embebidos en la envoltura celular. La incorporación de nuevos componentes, que contribuyen a su funcionamiento, incluyen la presencia de anillos o discos adicionales a los presentes en el NEFC, cubriendo o interactuando con el cuerpo basal y el estator, lo que permite una mayor eficiencia y velocidad de rotación al favorecer el reclutamiento de un mayor número de estatores, o que permiten la estabilización de estos al rotor. Además, podemos encontrar ganchos más robustos o filamentos con flagelinas modificadas que presentan propiedades enzimáticas. El aumento de los modelos bacterianos estudiados junto con el avance de las técnicas de visualización como la criomicroscopía, han permitido describir la gran riqueza existente en las variaciones de la arquitectura flagelar lo que ha llevado a un cambio de paradigma al lograr entender algunos de los procesos que permiten el ensamblaje y función del motor flagelar. Todo lo mencionado evidencia el momento de rápido progreso que el campo de estudio del flagelo bacteriano muestra recientemente.REFERENCIAS (EN ESTE ARTÍCULO)
Abrusci, P., Vergara-Irigaray, M., Johnson, S., Beeby, M. D.,Hendrixson, D. R., Roversi, P., Friede, M. E., Deane, J. E.,Jensen, G. J., Tang, C. M. & Lea, S. M. (2013). Architectureof the major component of the type III secretion systemexport apparatus. Nature Structural & Molecular Biology, 20(1), 99-106. https://doi.org/10.1038/nsmb.2452.
Bange, G., Kümmerer, N., Engel, C., Bozkurt, G., Wild, K. &Sinning, I. (2010). FlhA provides the adaptor for coordinateddelivery of late flagella building blocks to the type IIIsecretion system. Proceedings of the National Academyof Sciences of the United States of America, 107(25),11295–11300. https://doi.org/10.1073/pnas.1001383107.
Beeby, M., Ribardo, D. A., Brennan, C. A., Ruby, E. G.,Jensen, G. J. & Hendrixson, D. R. (2016). Diverse hightorquebacterial flagellar motors assemble wider statorrings using a conserved protein scaffold. Proceedings ofthe National Academy of Sciences of the United States ofAmerica, 113(13), E1917-E1926. https://doi.org/10.1073/pnas.1518952113.
Deakin, W. J., Parker, V. E., Wright, E. L., Ashcroft, K. J., Loake,G. J. & Shaw, C. H. (1999). Agrobacterium tumefacienspossesses a fourth flagellin gene located in a large genecluster concerned with flagellar structure, assembly andmotility. Microbiology, 145(6), 1397–1407. https://doi.org/10.1099/13500872-145-6-1397.
Deme, J. C., Johnson, S., Vickery, O., Muellbauer, A.,Monkhouse, H., Griffiths, T., James, R. H., Berks, B.C., Coulton, J. W., Stansfeld, P. J. & Lea, S. M. (2020).Structures of the stator complex that drives rotation of thebacterial flagellum. Nature Microbiology, 5, 1553-15564.https://doi.org/10.1038/s41564-020-0788-8.
Eckhard, U., Bandukwala, H., Mansfield, M. J., Marino, G.,Cheng, J., Wallace, I., Holyoak, T., Charles, T. C., Austin,J., Overall, C. M. & Doxey, A. C. (2017). Discovery ofa proteolytic flagellin family in diverse bacterial phylathat assembles enzymatically active flagella. NatureCommunications, 8(521), 1-9. https://doi.org/10.1038/s41467-017-00599-0.
Fabela, S., Domenzain, C., Mora, J. la, Osorio, A., Ramírez-Cabrera, V., Poggio, S., Dreyfus, G. & Camarena, L.(2013). A distant homologue of the FlgT protein interactswith MotB and FliL and is essential for flagellar rotationin Rhodobacter sphaeroides. Journal of Bacteriology,195(23), 5285–5296. https://doi.org/10.1128/jb.00760-13.
Fabiani, F. D., Renault, T. T., Peters, B., Dietsche, T., Gálvez,E. J., Guse, A., Freier, K., Charpentier, E., Strowig, T.,Franz-Wachtel, M., Macek, B., Wagner, S., Hensel, M.& Erhardt, M. (2017). A flagellum-specific chaperonefacilitates assembly of the core type III export apparatusof the bacterial flagellum. PLOS Biology, 15(8), e2002267.https://doi.org/10.1371/journal.pbio.2002267.
Fahrner, K. A., Block, S. M., Krishnaswamy, S., Parkinson, J.S. & Berg, H. C. (1994). A Mutant Hook-associated Protein(HAP3) Facilitates Torsionally Induced Transformationsof the Flagellar Filament of Escherichia coli. Journalof Molecular Biology, 238(2), 173–186. https://doi.org/10.1006/jmbi.1994.1279.
Faulds-Pain, A., Birchall, C., Aldridge, C., Smith, W. D.,Grimaldi, G., Nakamura, S., Miyata, T., Gray, J., Li, G.,Tang, J. X., Namba, K., Minamino, T. & Aldridge, P. D.(2011). Flagellin redundancy in Caulobacter crescentus andits implications for flagellar filament assembly. Journal ofBacteriology, 193(11), 2695–2707. https://doi.org/10.1128/jb.01172-10.
García-Ramos, M., Mora, J. de la, Ballado, T., Camarena,L. & Dreyfus, G. (2021). Modulation of the EnzymaticActivity of the Flagellar Lytic Transglycosylase SltF byRod Components and the Scaffolding Protein FlgJ inRhodobacter sphaeroides. Journal of Bacteriology, 203(20),e0037221. https://doi.org/10.1128/jb.00372-21.
Gibson, K. H., Trajtenberg, F., Wunder, E. A., Brady, M. R.,Martin, F. S., Mechaly, A., Shang, Z., Liu, J., Picardeau,M., Ko, A., Buschiazzo, A. & Sindelar, C. V. (2020). Anasymmetric sheath controls flagellar supercoiling andmotility in the Leptospira spirochete. eLife, 9(e53672),1-24. https://doi.org/10.7554/elife.53672.
González-Pedrajo, B., Mora, J. de la, Ballado, T., Camarena, L.& Dreyfus, G. (2002). Characterization of the flgG operonof Rhodobacter sphaeroides WS8 and its role in flagellumbiosynthesis. Biochimica et Biophysica Acta (BBA) - GeneStructure and Expression, 1579(1), 55–63. https://doi.org/10.1016/s0167-4781(02)00504-3.
Henderson, L. D., Matthews-Palmer, T. R., Gulbronson,C. J., Ribardo, D. A., Beeby, M. & Hendrixson, D. R.(2020). Diversification of Campylobacter jejuni FlagellarC-Ring Composition Impacts Its Structure and Functionin Motility, Flagellar Assembly, and Cellular Processes.mBio, 11(e02286-19), 1-19. https://doi.org/10.1128/mbio.02286-19.
Inoue, Y., Ogawa, Y., Kinoshita, M., Terahara, N., Shimada,M., Kodera, N., Ando, T., Namba, K., Kitao, A., Imada,K. & Minamino, T. (2019). Structural Insights into theSubstrate Specificity Switch Mechanism of the Type IIIProtein Export Apparatus. Structure, 27(6), 965-976.e6.https://doi.org/10.1016/j.str.2019.03.017.
Kaplan, M., Oikonomou, C. M., Wood, C. R., Chreifi, G.,Subramanian, P., Ortega, D. R., Chang, Y., Beeby, M.,Shaffer, C. L. & Jensen, G. J. (2022). Novel transientcytoplasmic rings stabilize assembling bacterial flagellarmotors. The EMBO Journal, 41(e109523), 1-15. https://doi.org/10.15252/embj.2021109523.
Kuhlen, L., Abrusci, P., Johnson, S., Gault, J., Deme, J., Caesar,J., Dietsche, T., Mebrhatu, M. T., Ganief, T., Macek, B.,Wagner, S., Robinson, C. V. & Lea, S. M. (2018). Structureof the core of the type III secretion system export apparatus.Nature Structural & Molecular Biology, 25(7), 583–590.https://doi.org/10.1038/s41594-018-0086-9.
Liu, J., Lin, T., Botkin, D. J., McCrum, E., Winkler, H. & Norris,S. J. (2009). Intact flagellar motor of Borrelia burgdorferirevealed by cryo-electron tomography: evidence for statorring curvature and rotor/C-ring assembly flexion. Journal ofBacteriology, 191(16), 5026–5036. https://doi.org/10.1128/jb.00340-09.
Mariano, G., Faba-Rodriguez, R., Bui, S., Zhao, W., Ross, J.,Tzokov, S. B. & Bergeron, J. R. C. (2022). Oligomerizationof the FliF Domains Suggests a Coordinated Assemblyof the Bacterial Flagellum MS Ring. Frontiers inMicrobiology, 12(781960), 1-12. https://doi.org/10.3389/fmicb.2021.781960.61. Martínez, R. M., Dharmasena, M. N., Kirn, T. J. & Taylor, R. K.(2009). Characterization of two outer membrane proteins,FlgO and FlgP, that influence Vibrio cholerae motility.Journal of Bacteriology, 191(18), 5669–5679. https://doi.org/10.1128/jb.00632-09.
Miller, M. R., Miller, K. A., Bian, J., James, M. E., Zhang, S.,Lynch, M. J., Callery, P. S., Hettick, J. M., Cockburn, A., Liu,J., Li, C., Crane, B. R. & Charon, N. W. (2016). Spirochaeteflagella hook proteins self-catalyse a lysinoalanine covalentcrosslink for motility. Nature Microbiology, 1(16134), 1-8.https://doi.org/10.1038/nmicrobiol.2016.134.
Moon, K., Zhao, X., Xu, H., Liu, J. & Motaleb, M. A. (2018).A Tetratricopeptide Repeat Domain Protein has ProfoundEffects on Assembly of Periplasmic Flagella, Morphology,and Motility of the Lyme disease spirochete Borreliaburgdorferi. Molecular Microbiology, 110(4), 634–647.https://doi.org/10.1111/mmi.14121.
Moon, K., Zhao, X., Manne, A., Wang, J., Yu, Z., Liu, J. &Motaleb, M. A. (2016). Spirochetes flagellar collar proteinFlbB has astounding effects in orientation of periplasmicflagella, bacterial shape, motility, and assembly of motorsin Borrelia burgdorferi. Molecular Microbiology, 102(2),336–348. https://doi.org/10.1111/mmi.13463.
Mot, D. R. & Vanderleyden, J. (1994). The C-terminal sequenceconservation between OmpA-related outer membraneproteins and MotB suggests a common function in bothGram-positive and Gram-negative bacteria, possibly inthe interaction of these domains with peptidoglycan.Molecular Microbiology, 12(2), 333-334. https://doi.org/10.1111/j.1365-2958.1994.tb00431.x.
Nakane, T., Kotecha, A., Sente, A., McMullan, G., Masiulis,S., Brown, P. M. G. E., Grigoras, I. T., Malinauskaite, L.,Malinauskas, T., Miehling, J., Uchański, T., Yu, L., Karia,D., Pechnikova, E. V., Jong, E. de, Keizer, J., Bischoff, M.,McCormack, J., Tiemeijer, P., Hardwick, S. W., Chirgadze,D. Y., Murshudov, G., Aricescu, A. R. & Scheres, S. H.W. (2020). Single-particle cryo-EM at atomic resolution.Nature, 587(7832), 152–156. https://doi.org/10.1038/s41586-020-2829-0.
Samatey, F. A., Matsunami, H., Imada, K., Nagashima, S.,Shaikh, T. R., Thomas, D. R., Chen, J. Z., DeRosier, D. J.,Kitao, A. & Namba, K. (2004). Structure of the bacterialflagellar hook and implication for the molecular universaljoint mechanism. Nature, 431(7012), 1062–1068. https://doi.org/10.1038/nature02997.
Scharf, B., Schuster-Wolff-Buhring, H., Rachel, R. &Schmitt, R. (2001). Mutational Analysis of the Rhizobiumlupini H13-3 and Sinorhizobium meliloti FlagellinGenes: Importance of Flagellin A for Flagellar FilamentStructure and Transcriptional Regulation. Journal ofBacteriology, 183(18), 5334–5342. https://doi.org/10.1128/jb.183.18.5334-5342.2001.
Tachiyama, S., Chan, K. L., Liu, X., Hathroubi, S., Peterson,B., Khan, M. F., Ottemann, K. M., Liu, J. & Roujeinikova,A. (2022). The flagellar motor protein FliL forms a scaffoldof circumferentially positioned rings required for statoractivation. Proceedings of the National Academy of Sciencesof the United States of America, 119(4), e2118401119.https://doi.org/10.1073/pnas.2118401119.
Takekawa, N., Kawamoto, A., Sakuma, M., Kato, T., Kojima,S., Kinoshita, M., Minamino, T., Namba, K., Homma, M.& Imada, K. (2021). Two Distinct Conformations in 34 FliFSubunits Generate Three Different Symmetries within theFlagellar MS-Ring. mBio, 12(2), e03199-20. https://doi.org/10.1128/mbio.03199-20.
Xue, C., Lam, K. H., Zhang, H., Sun, K., Lee, S. H., Chen, X.& Au, S. W. N. (2018). Crystal structure of the FliF–FliGcomplex from Helicobacter pylori yields insight into theassembly of the motor MS–C ring in the bacterial flagellum.Journal of Biological Chemistry, 293(6), 2066–2078.https://doi.org/10.1074/jbc.M117.797936.
Zhu, S., Nishikino, T., Takekawa, N., Terashima, H., Kojima, S.,Imada, K., Homma, M. & Liu, J. (2019). In situ Structureof the Vibrio Polar Flagellum Reveals a Distinct OuterMembrane Complex and Its Specific Interaction with theStator. Journal of Bacteriology, 202(4), 1-12. https://doi.org/10.1128/jb.00592-19