2024, Number 1
<< Back Next >>
Rev Educ Bioquimica 2024; 43 (1)
El factor liberador de corticotropina, las urocortinas y sus receptores: sus acciones más allá del estrés, la depresión y la ansiedad
Cruz-Villarreal DE, De Jesus-Quiroz C, Hauger R, Olivares-Reyes JA
Language: Spanish
References: 69
Page: 8-24
PDF size: 1019.63 Kb.
ABSTRACT
The corticotropin-releasing factor (CRF) and urocortins (Ucns) constitute a family of neuropeptides with a central role in the regulation of the adaptive stress response by modulating the activity of the hypothalamic-pituitary-adrenal (HPA) axis in the central nervous system (CNS). Their actions require binding to and activating transmembrane receptors named CRF1R and CRF2R, expressed in different regions of the CNS and peripheral tissues. In addition to their role in regulating the HPA axis, CRF and Ucns are critical mediators of physiological and pathophysiological processes in several sys-tems, namely CNS, cardiovascular, gastrointestinal, immunological, endo-crine, and reproductive. Recent studies have shown that alterations in CRF and Ucns signaling are related to the development of stress-related diseases, such as anxiety and depression, and other types of clinically relevant condi-tions, such as cardiovascular diseases, arterial hypertension, gastrointestinal and inflammatory disorders, allergic-type disorders, obesity, and metabolic syndrome. This review addresses the mechanisms of action and regulation of CRF, its related peptides, their receptors, and their role in regulating stress re-sponses and actions in the periphery.
REFERENCES
Chrousos GP. Stress and disorders of the stresssystem. Nat Rev Endocrinol. 2009; 5(7):374-381.
Dai S, Mo Y, Wang Y, Xiang B, Liao Q, ZhouM, et al. Chronic Stress Promotes CancerDevelopment. Front Oncol. 2020; 10.
Dallman MF, Pecoraro N, Akana SF, La FleurSE, Gomez F, Houshyar H, et al. Chronic stress andobesity: a new view of "comfort food". Proc NatlAcad Sci. 2003; 100(20):11696-11701.
Olivares-Reyes AJ, Hauger RL. Señalizacion yEstrés: Mecanismos de Acción y Regulación delFactor Liberador de Corticotropina. 2012. En: 7°Congreso de Biologia Oral. México, D. F.: BuenaOnda; [11-21].
Godoy LD, Rossignoli MT, Delfino-Pereira P,Garcia-Cairasco N, de Lima Umeoka EH. AComprehensive Overview on Stress Neurobiology:Basic Concepts and Clinical Implications. FrontBehav Neurosci. 2018; 12.
Tsigos C, Kyrou I, Kassi E, Chrousos GP.Stress: Endocrine Physiology and Pathophysiology.In: Feingold KR, Anawalt B, Boyce A, Chrousos G,de Herder WW, Dhatariya K, et al., editors.Endotext. South Dartmouth (MA)2000.
Rivier C, Vale W. Modulation of stress-inducedACTH release by corticotropin-releasing factor,catecholamines and vasopressin. Nature. 1983;305(5932):325-327.
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the StressResponse. Physiol Rev. 2018; 98(4):2225-2286.
Dedic N, Chen A, Deussing JM. The CRFFamily of Neuropeptides and their Receptors-Mediators of the Central Stress Response. Curr MolPharmacol. 2018; 11(1):4-31.
Hauger R, Risbrough V, Brauns O,Dautzenberg F. Corticotropin Releasing Factor(CRF) Receptor Signaling in the Central NervousSystem: New Molecular Targets. CNS NeurolDisord Drug Targets. 2006; 5(4):453-479.
Stengel A, Taché YF. Corticotropin-releasingfactor signaling and visceral response to stress. ExpBiol Med. 2010; 235:1168 - 1178.
Smith SM, Vale WW. The role of thehypothalamic-pituitary-adrenal axis inneuroendocrine responses to stress. Dialogues ClinNeurosci. 2006; 8(4):383-395.
Vuppaladhadiam L, Ehsan C, Akkati M,Bhargava A. Corticotropin-Releasing FactorFamily: A Stress Hormone-Receptor System’sEmerging Role in Mediating Sex-SpecificSignaling. Cells. 2020; 9(4):839.
Halmos G, Dobos N, Juhasz E, Szabo Z,Schally AV. Hypothalamic Releasing Hormones. In:Litwack G, editor. Hormonal Signaling in Biologyand Medicine: Academic Press; 2020. p. 43-68.
Squillacioti C, Pelagalli A, Liguori G,Mirabella N. Urocortins in the mammalianendocrine system. Acta Vet Scand. 2019; 61(1):46.
Oki Y, Sasano H. Localization andphysiological roles of urocortin. Peptides. 2004;25(10):1745-1749.
Calderón-Sánchez EM, Falcón D, Martín-Bórnez M, Ordoñez A, Smani T. Urocortin Role inIschemia Cardioprotection and the Adverse CardiacRemodeling. Int J Mol Sci. 2021; 22(22):12115.
Takefuji M, Murohara T. Corticotropin-Releasing Hormone Family and Their Receptors inthe Cardiovascular System. Circ J. 2019; 83(2):261-266.
Balogh B, Vecsernyés M, Stayer‐Harci A, BertaG, Tarjányi O, Sétáló G. Urocortin stimulates theERK1/2 signaling pathway and the proliferation ofHeLa cells via CRF receptor 1. FEBS Open Bio.2023.
Henckens MJAG, Deussing JM, Chen A.Chapter 16 - The role of the CRF-urocortin systemin stress resilience. In: Chen A, editor. StressResilience: Academic Press; 2020. p. 233-256.
Vasconcelos M, Stein DJ, Gallas-Lopes M,Landau L, De Almeida RMM. Corticotropin-releasing factor receptor signaling and modulation:implications for stress response and resilience.Trends Psychiatry Psychother. 2020; 42(2):195-206.
Hauger RL, Risbrough V, Oakley RH,Olivares-Reyes JA, Dautzenberg FM. Role of CRFReceptor Signaling in Stress Vulnerability, Anxiety,and Depression. Ann N Y Acad Sci. 2009; 1179(1):120-143.
Hauger RL, Olivares-Reyes JA, Braun S, Hernandez-Aranda J, Hudson CC, Gutknecht E, et al. Desensitization of human CRF2(a) receptor signaling governed by agonist potency and βarrestin2 recruitment. Regul Pept. 2013; 186:62-76.
Oakley RH, Olivares-Reyes JA, Hudson CC, Flores-Vega F, Dautzenberg FM, Hauger RL. Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and β-arrestin-2 recruitment: a mechanism regulating stress and anxiety responses. Am J Physiol Regul Integr Comp Physiol. 2007; 293(1):R209-R222.
Kohout TA, Lefkowitz RJ. Regulation of G Protein-Coupled Receptor Kinases and Arrestins During Receptor Desensitization. Mol Pharmacol. 2003; 63(1):9-18.
Moore CAC, Milano SK, Benovic JL. Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol. 2007; 69:451-482.
Binder EB, Nemeroff CB. The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry. 2010; 15(6):574-588.
Henckens MJ, Deussing JM, Chen A. Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci. 2016; 17(10):636-651.
Hauger RL, Olivares-Reyes JA, Dautzenberg FM, Lohr JB, Braun S, Oakley RH. Molecular and cell signaling targets for PTSD pathophysiology and pharmacotherapy. Neuropharmacology. 2012; 62(2):705-714.
Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nature Genetics. 2000; 24(4):410-414.
Kuperman Y, Chen A. Urocortins: emerging metabolic and energy homeostasis perspectives. Trends Endocrinol Metab. 2008; 19(4):122-129.
Chen A, Brar B, Choi CS, Rousso D, Vaughan J, Kuperman Y, et al. Urocortin 2 modulates glucose utilization and insulin sensitivity in skeletal muscle. Proc Natl Acad Sci. 2006; 103(44):16580-16585.
Chao H, Li H, Grande R, Lira V, Yan Z, Harris TE, et al. Involvement of mTOR in Type 2 CRF Receptor Inhibition of Insulin Signaling in Muscle Cells. Molecular Endocrinology. 2015; 29(6):831-841.
Li C, Chen P, Vaughan J, Lee KF, Vale W. Urocortin 3 regulates glucose-stimulated insulin secretion and energy homeostasis. Proc Natl Acad Sci. 2007; 104(10):4206-4211.
Van Der Meulen T, Donaldson CJ, Cáceres E, Hunter AE, Cowing-Zitron C, Pound LD, et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat Med. 2015; 21(7):769-776.
Dermitzaki E, Liapakis G, Androulidaki A, Venihaki M, Melissas J, Tsatsanis C, et al. Corticotrophin-Releasing Factor (CRF) and the Urocortins Are Potent Regulators of the Inflammatory Phenotype of Human and Mouse White Adipocytes and the Differentiation of Mouse 3T3L1 Pre-Adipocytes. PLoS ONE. 2014; 9(5):e97060.
Xiong Y, Qu Z, Chen N, Gong H, Song M, Chen X, et al. The local corticotropin-releasing hormone receptor 2 signalling pathway partly mediates hypoxia-induced increases in lipolysis via the cAMP–protein kinase A signalling pathway in white adipose tissue. Mol Cell Endocrinol. 2014; 392(1–2):106-114.
Lu B, Diz-Chaves Y, Markovic D, Contarino A, Penicaud L, Fanelli F, et al. The corticotrophin-releasing factor/urocortin system regulates white fat browning in mice through paracrine mechanisms. Int J Obes. 2015; 39(3):408-417.
Diaz I, Smani T. New insights into the mechanisms underlying vascular and cardiac effects of urocortin. Curr Vasc Pharmacol. 2013; 11(4):457-464.
Popov SV, Prokudina ES, Mukhomedzyanov AV, Naryzhnaya NV, Ma H, Zurmanova JM, et al. Cardioprotective and Vasoprotective Effects of Corticotropin-Releasing Hormone and Urocortins: Receptors and Signaling. J Cardiovasc Pharmacol Ther. 2021; 26(6):575-584.
Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017; 214(7):1877-1888.
Monteiro-Pinto C, Adão R, Leite-Moreira AF, Brás-Silva C. Cardiovascular Effects of Urocortin-2: Pathophysiological Mechanisms and Therapeutic Potential. Cardiovasc Drugs Ther. 2019; 33(5):599-613.
Chatzaki E, Kefala N, Drosos I, Lalidou F,Baritaki S. Do urocortins have a role in treatingcardiovascular disease? Drug Discovery Today.2019; 24(1):279-284.
Gravanis A, Margioris AN. The corticotropin-releasing factor (CRF) family of neuropeptides ininflammation: potential therapeutic applications.Curr Med Chem. 2005; 12(13):1503-1512.
Vecsernyés M, Kovács KJ, Tóth BE, Welke L,Nagy GM. New Aspects of the Immunoregulationby the Hypothalamo-Pituitary-Adrenal (HPA) Axis.Adv Neuroimmune Biol. 2012; 3:287-295.
Nezi M, Mastorakos G, Mouslech Z.Corticotropin Releasing Hormone And TheImmune/Inflammatory Response: MDText.com,Inc., South Dartmouth (MA); 2015 2000.
Im E. Multi-facets of Corticotropin-releasingFactor in Modulating Inflammation andAngiogenesis. J Neurogastroenterol Motil. 2015;21(1):025-032.
Moss AC, Anton P, Savidge T, Newman P,Cheifetz AS, Gay J, et al. Urocortin II mediates pro-inflammatory effects in human colonocytes viacorticotropin-releasing hormone receptor 2. Gut.2007; 56(9):1210-1217.
Baigent SM. Peripheral corticotropin-releasinghormone and urocortin in the control of the immuneresponse. Peptides. 2001; 22(5):809-820.
Gonzalez-Rey E, Delgado M. Anti-inflammatory neuropeptide receptors: newtherapeutic targets for immune disorders? TrendsPharmacol Sci. 2007; 28(9):482-491.
Chatzaki E, Charalampopoulos I, Leontidis C,Mouzas IA, Tzardi M, Tsatsanis C, et al. Urocortinin Human Gastric Mucosa: Relationship toInflammatory Activity. J Clin Endocrinol Metab.2003; 88(1):478-483.
Agnello D, Bertini R, Sacco S, Meazza C, VillaP, Ghezzi P. Corticosteroid-independent inhibitionof tumor necrosis factor production by theneuropeptide urocortin. Am J Physiol EndocrinolMetab. 1998; 275(5):E757-E762.
Tsatsanis C, Androulidaki A, Dermitzaki E,Charalampopoulos I, Spiess J, Gravanis A, et al.Urocortin 1 and Urocortin 2 induce macrophageapoptosis via CRFR2. FEBS Lett. 2005;579(20):4259-4264.
Liu X, Liu C, Li J, Zhang X, Song F, Xu J.Urocortin attenuates myocardial fibrosis in diabeticrats via the Akt/GSK-3beta signaling pathway. Endocr Res. 2016; 41(2):148-157.
Honjo T, Inoue N, Shiraki R, Kobayashi S,Otsui K, Takahashi M, et al. Endothelial UrocortinHas Potent Antioxidative Properties and IsUpregulated by Inflammatory Cytokines andPitavastatin. J Vasc Res. 2006; 43(2):131-138.
Steenblock C, Todorov V, Kanczkowski W,Eisenhofer G, Schedl A, Wong M-L, et al. Severeacute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. MolPsychiatry. 2020; 25(8):1611-1617.
Ding Y, He L, Zhang Q, Huang Z, Che X, HouJ, et al. Organ distribution of severe acuterespiratory syndrome (SARS) associatedcoronavirus (SARS-CoV) in SARS patients:implications for pathogenesis and virustransmission pathways. J Pathol. 2004; 203(2):622-630.
Bellastella G, Cirillo P, Carbone C,Scappaticcio L, Maio A, Botta G, et al.Neuroimmunoendocrinology of SARS-CoV-2Infection. Biomedicines. 2022; 10(11):2855.
Agarwal S, Agarwal SK. Endocrine changes inSARS-CoV-2 patients and lessons from SARS-CoV.Postgrad Med J. 2020; 96(1137):412-416.
Yavropoulou MP, Tsokos GC, Chrousos GP,Sfikakis PP. Protracted stress-inducedhypocortisolemia may account for the clinical andimmune manifestations of Long COVID. ClinImmunol. 2022; 245:109133.
Ho JC, Ooi GC, Mok TY, Chan JW, Hung I,Lam B, et al. High-Dose Pulse Versus NonpulseCorticosteroid Regimens in Severe AcuteRespiratory Syndrome. Am J Respir Crit Care Med.2003; 168(12):1449-1456.
Stockman LJ, Bellamy R, Garner P. SARS:Systematic Review of Treatment Effects. PLoSMed. 2006; 3(9):e343.
De Kloet AD, Cahill KM, Scott KA, KrauseEG. Overexpression of angiotensin convertingenzyme 2 reduces anxiety-like behavior in femalemice. Physiol Behav. 2020; 224:113002.
Alenina N, Bader M. ACE2 in BrainPhysiology and Pathophysiology: Evidence fromTransgenic Animal Models. Neurochem Res. 2019;44(6):1323-1329.
Wang LA, De Kloet AD, Smeltzer MD, CahillKM, Hiller H, Bruce EB, et al. Couplingcorticotropin-releasing-hormone and angiotensinconverting enzyme 2 dampens stress responsiveness in male mice. Neuropharmacology. 2018; 133:85-93.
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe Acute Respiratory Syndrome Coronavirus Infection Causes Neuronal Death in the Absence of Encephalitis in Mice Transgenic for Human ACE2. J Virol. 2008; 82(15):7264-7275.
Leow MK-S, Kwek DS-K, Ng AW-K, Ong K-C, Kaw GJ-L, Lee LS-U. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol. 2005; 63(2):197-202.
Rajkumar RP. Harnessing the Neurobiology of Resilience to Protect the Mental Well-Being of Healthcare Workers During the COVID-19 Pandemic. Front Psychol. 2021; 12(745):1-15.
Bailey CR, Cordell E, Sobin SM, Neumeister A. Recent Progress in Understanding the Pathophysiology of Post-Traumatic Stress Disorder. CNS Drugs. 2013; 27(3):221-232.