2024, Número 1
<< Anterior Siguiente >>
Rev Educ Bioquimica 2024; 43 (1)
Las ROP GTPasas en las interacciones plantas-microorganismos
García-Soto I, Serrano M
Idioma: Español
Referencias bibliográficas: 28
Paginas: 25-34
Archivo PDF: 544.33 Kb.
RESUMEN
Las plantas se encuentran en constante interacción con diversos microorga-nismos del medioambiente. La correcta detección y activación de la señalización inducida por los microorganismos en las plantas, conduce a la inducción de mecanismos moleculares que las ayudan a discernir entre las interacciones positivas o negativas. Las proteínas GTPasas pequeñas son parte de este meca-nismo de transducción de señales. Durante la interacción planta-microorga-nismos las ROP GTPasas reciben señales de los receptores transmembranales y activan efectores moleculares que permiten a la planta establecer el tipo de relación que establecerán con los microorganismos. Estas proteínas son consi-deradas como interruptores moleculares y están involucradas en funciones celulares como tráfico vesicular, señalización, rearreglo del citoesqueleto, trans-porte nuclear, crecimiento polar, expresión genética y regulación hormonal. En esta revisión, describimos la información más reciente sobre el mecanismo de acción de las ROPs GTPasas, así como su papel en las interacciones planta-microorganismos.
REFERENCIAS (EN ESTE ARTÍCULO)
Rivero C, Traubenik S, Zanetti ME, BlancoFA. Small GTPases in plant biotic interactions.Small GTPases [Internet]. 2019;10(5):350–60Available from: https://doi.org/10.1080/21541248.2017.1333557
Cooper GM. Cellular transforming genes.Science (80- ) [Internet]. 1982 [cited 2023 Apr17];217(4562):801–6. Available from:https://pubmed.ncbi.nlm.nih.gov/6285471/
Engelhardt S, Trutzenberg A, Hückelhoven R.Regulation and Functions of ROP GTPases in Plant-Microbe Interactions [Internet]. Vol. 9, Cells. NLM(Medline); 2020 [cited 2022 Apr 11]. Availablefrom: /pmc/articles/PMC7565977/
Yalovsky S. Protein lipid modifications and theregulation of ROP GTPase function. J Exp Bot[Internet]. 2015 Mar 1 [cited 2023 May1];66(6):1617–24. Available from: https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erv057
Feiguelman G, Fu Y, Yalovsky S. ROPGTPases structure-function and signaling pathways.Vol. 176, Plant Physiology. 2018. 57–79 p
Bishop AL, Hall A. Rho GTPases and theireffector proteins. Biochem J. 2000;348(2):241–55
Berken A. ROPs in the spotlight of plant signaltransduction. Cell Mol Life Sci. 2006;63(21):2446–59
Lei MJ, Wang Q, Li X, Chen A, Luo L, Xie Y,et al. The small Gtpase ROP10 of medicagotruncatula is required for both tip growth of roothairs and nod factor-induced root hair deformation.Plant Cell [Internet]. 2015 [cited 2023 May1];27(3):806–22. Available from: /pmc/articles/PMC4558664/
Duan Q, Kita D, Li C, Cheung AY, Wu HM.FERONIA receptor-like kinase regulates RHOGTPase signaling of root hair development. ProcNatl Acad Sci U S A [Internet]. 2010 Oct 12 [cited2023 May 7];107(41):17821–6. Available from:www.pnas.org/cgi/doi/10.1073/pnas.1005366107
Molendijk AJ, Ruperti B, Singh MK,Dovzhenko A, Ditengou FA, Milia M, et al. Acysteine-rich receptor-like kinase NCRK and apathogen-induced protein kinase RBK1 are RopGTPase interactors. Plant J [Internet]. 2008 Mar[cited 2023 May 7];53(6):909–23. Available from:https://pubmed.ncbi.nlm.nih.gov/18088316/
Ren H, Dang X, Cai X, Yu P, Li Y, Zhang S, etal. Spatio-temporal orientation of microtubulescontrols conical cell shape in Arabidopsis thalianapetals. Oppenheimer D, editor. PLOS Genet[Internet]. 2017 Jun 23 [cited 2023 May7];13(6):e1006851. Available from: https://dx.plos.org/10.1371/journal.pgen.1006851
Stephan O, Cottier S, Fahlén S, Montes-Rodriguez A, Sun J, Magnus Eklund D, et al. RISAPis a TGN-Associated RAC5 effector regulatingmembrane traffic during polar cell growth intobacco. Plant Cell [Internet]. 2014 [cited 2023 May7];26(11):4426–47. Available from:/pmc/articles/PMC4277221/
Hoefle C, Mccollum C, Hückelhoven R. BarleyROP-Interactive Partner-a organizes into RAC1-and MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN 1-dependentmembrane domains. 2020;1–12
Liu J, Liu M, Qiu L, Xie F. SPIKE1 Activatesthe GTPase ROP6 to Guide the Polarized Growth ofInfection Threads in Lotus japonicus. Plant Cell.2020;tpc.00109.2020
García-Soto I, Boussageon R, Cruz-FarfánYM, Castro-Chilpa JD, Hernández-Cerezo LX,Bustos-Zagal V, et al. The Lotus japonicus ROP3 IsInvolved in the Establishment of the Nitrogen-Fixing Symbiosis but Not of the ArbuscularMycorrhizal Symbiosis. Front Plant Sci [Internet].2021 Nov 12 [cited 2022 Feb 12];12:2618.Available from:https://www.frontiersin.org/articles/10.3389/fpls.2021.696450/full
Zhang Z, Yang F, Na R, Zhang X, Yang S, GaoJ, et al. AtROP1 negatively regulates potatoresistance to via NADPH oxidase-mediatedaccumulation of H2O2. BMC Plant Biol.2014;14(1):1–14
Kawano Y, Chen L, Shimamoto K. Thefunction of rac small GTPase and associatedproteins in rice innate immunity. Rice. 2010;3(2–3):112–21
Kawasaki T, Koita H, Nakatsubo T, HasegawaK, Wakabayashi K, Takahashi H, et al. Cinnamoyl-CoA reductase, a key in lignin biosynthesis, is aneffector of small GTPase Rac in defense signaling inrice. Proc Natl Acad Sci U S A. 2006;103(1):230–5
Chen L, Shiotani K, Togashi T, Miki D,Aoyama M, Wong HL, et al. Analysis of theRac/Rop small gtpase family in rice: Expression, subcellular localization and role in disease resistance. Plant Cell Physiol. 2010;51(4):585–95
Nottensteiner M, Zechmann B, Mccollum C,Hückelhoven R. RESEARCH PAPER A barleypowdery mildew fungus non-autonomousretrotransposon encodes a peptide that supportspenetration success on barley. 2018;69(15):3745–58
Ono E, Wong HL, Kawasaki T, Hasegawa M,Kodama O, Shimamoto K. Essential role of thesmall GTPase Rac in disease resistance of rice. ProcNatl Acad Sci U S A. 2001;98(2):759–64
Kawasaki T, Henmi K, Ono E, Hatakeyama S,Iwano M, Satoh H, et al. The small GTP-bindingprotein Rac is a regulator of cell death in plants.Proc Natl Acad Sci U S A. 1999;96(19):10922–6
Rong D, Zhao S, Tang W, Luo N, He H, WangZ, et al. ROP signaling regulates spatial pattern ofcell division and specification of meristem notch.Proc Natl Acad Sci U S A [Internet]. 2022 Nov 22[cited 2023 May 7];119(47):e2117803119.Available from: http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117803119/-/DCSupplemental
Ke D, Li X, Han Y, Cheng L, Yuan H, WangL.ROP6 is involved in root hair deformationinduced by Nod factors in Lotus japonicus. PlantPhysiol Biochem [Internet]. 2016;108:488–98.Available from:http://dx.doi.org/10.1016/j.plaphy.2016.08.015
Wong HL, Pinontoan R, Hayashi K, Tabata R,Yaeno T, Hasegawa K, et al. Regulation of RiceNADPH Oxidase by Binding of Rac GTPase to ItsN-Terminal Extension. 2007;19(December):4022–34
Akamatsu A, Wong HL, Fujiwara M, Okuda J,Nishide K, Uno K, et al. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential earlycomponent of chitin-induced rice immunity. CellHost Microbe [Internet]. 2013;13(4):465–76.Available from:http://dx.doi.org/10.1016/j.chom.2013.03.007
Gracía-Soto I. Identifcación del interactoma deproteínas ROP durante el rearreglo del citoesqueletoen lotus japonicus ante la endosimbiosis bacteriana.Universidad Nacional Autónoma de México; 2019
Lin Q, Zhou Z, Luo W, Fang M, Li M, Li H.Screening of proximal and interacting proteins inrice protoplasts by proximity-dependentbiotinylation. Front Plant Sci. 2017;8(May):1–10