2024, Número 1
<< Anterior Siguiente >>
Rev Educ Bioquimica 2024; 43 (1)
El factor liberador de corticotropina, las urocortinas y sus receptores: sus acciones más allá del estrés, la depresión y la ansiedad
Cruz-Villarreal DE, De Jesus-Quiroz C, Hauger R, Olivares-Reyes JA
Idioma: Español
Referencias bibliográficas: 69
Paginas: 8-24
Archivo PDF: 1019.63 Kb.
RESUMEN
El factor liberador de corticotropina (CRF) y las urocortinas (Ucns), cons-tituyen una familia de neuropéptidos con una función crítica en la regulación de la respuesta adaptativa al estrés, al modular la actividad del eje hipotalámico-pituitario-suprarrenal (HPA) en el sistema nervioso central (SNC). Las acciones de estos neuropéptidos se inician al unirse a receptores transmembranales denominados CRF tipo 1 (CRF1R) y tipo 2 (CRF2R), expre-sados en diferentes regiones del SNC y en tejidos periféricos. Además de regular al eje HPA, el CRF y las Ucns son importantes mediadores de pro-cesos fisiológicos y fisiopatológicos de los sistemas nervioso central, cardio-vascular, gastrointestinal, inmunológico, endocrino y reproductivo. Las alteraciones en las vías de señalización activadas por el CRF y las Ucns, no sólo se relacionan con el desarrollo de enfermedades asociadas al estrés, como la ansiedad y la depresión, sino también con la insuficiencia cardíaca, la hipertensión arterial, diversos desórdenes gastrointestinales, trastornos alérgicos e inflamatorios, además de obesidad y síndrome metabólico. En esta revisión se abordarán los mecanismos de acción y regulación del CRF, sus péptidos relacionados y sus receptores, así como su participación en la regulación de las respuestas al estrés y sus acciones en la periferia.
REFERENCIAS (EN ESTE ARTÍCULO)
Chrousos GP. Stress and disorders of the stresssystem. Nat Rev Endocrinol. 2009; 5(7):374-381.
Dai S, Mo Y, Wang Y, Xiang B, Liao Q, ZhouM, et al. Chronic Stress Promotes CancerDevelopment. Front Oncol. 2020; 10.
Dallman MF, Pecoraro N, Akana SF, La FleurSE, Gomez F, Houshyar H, et al. Chronic stress andobesity: a new view of "comfort food". Proc NatlAcad Sci. 2003; 100(20):11696-11701.
Olivares-Reyes AJ, Hauger RL. Señalizacion yEstrés: Mecanismos de Acción y Regulación delFactor Liberador de Corticotropina. 2012. En: 7°Congreso de Biologia Oral. México, D. F.: BuenaOnda; [11-21].
Godoy LD, Rossignoli MT, Delfino-Pereira P,Garcia-Cairasco N, de Lima Umeoka EH. AComprehensive Overview on Stress Neurobiology:Basic Concepts and Clinical Implications. FrontBehav Neurosci. 2018; 12.
Tsigos C, Kyrou I, Kassi E, Chrousos GP.Stress: Endocrine Physiology and Pathophysiology.In: Feingold KR, Anawalt B, Boyce A, Chrousos G,de Herder WW, Dhatariya K, et al., editors.Endotext. South Dartmouth (MA)2000.
Rivier C, Vale W. Modulation of stress-inducedACTH release by corticotropin-releasing factor,catecholamines and vasopressin. Nature. 1983;305(5932):325-327.
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the StressResponse. Physiol Rev. 2018; 98(4):2225-2286.
Dedic N, Chen A, Deussing JM. The CRFFamily of Neuropeptides and their Receptors-Mediators of the Central Stress Response. Curr MolPharmacol. 2018; 11(1):4-31.
Hauger R, Risbrough V, Brauns O,Dautzenberg F. Corticotropin Releasing Factor(CRF) Receptor Signaling in the Central NervousSystem: New Molecular Targets. CNS NeurolDisord Drug Targets. 2006; 5(4):453-479.
Stengel A, Taché YF. Corticotropin-releasingfactor signaling and visceral response to stress. ExpBiol Med. 2010; 235:1168 - 1178.
Smith SM, Vale WW. The role of thehypothalamic-pituitary-adrenal axis inneuroendocrine responses to stress. Dialogues ClinNeurosci. 2006; 8(4):383-395.
Vuppaladhadiam L, Ehsan C, Akkati M,Bhargava A. Corticotropin-Releasing FactorFamily: A Stress Hormone-Receptor System’sEmerging Role in Mediating Sex-SpecificSignaling. Cells. 2020; 9(4):839.
Halmos G, Dobos N, Juhasz E, Szabo Z,Schally AV. Hypothalamic Releasing Hormones. In:Litwack G, editor. Hormonal Signaling in Biologyand Medicine: Academic Press; 2020. p. 43-68.
Squillacioti C, Pelagalli A, Liguori G,Mirabella N. Urocortins in the mammalianendocrine system. Acta Vet Scand. 2019; 61(1):46.
Oki Y, Sasano H. Localization andphysiological roles of urocortin. Peptides. 2004;25(10):1745-1749.
Calderón-Sánchez EM, Falcón D, Martín-Bórnez M, Ordoñez A, Smani T. Urocortin Role inIschemia Cardioprotection and the Adverse CardiacRemodeling. Int J Mol Sci. 2021; 22(22):12115.
Takefuji M, Murohara T. Corticotropin-Releasing Hormone Family and Their Receptors inthe Cardiovascular System. Circ J. 2019; 83(2):261-266.
Balogh B, Vecsernyés M, Stayer‐Harci A, BertaG, Tarjányi O, Sétáló G. Urocortin stimulates theERK1/2 signaling pathway and the proliferation ofHeLa cells via CRF receptor 1. FEBS Open Bio.2023.
Henckens MJAG, Deussing JM, Chen A.Chapter 16 - The role of the CRF-urocortin systemin stress resilience. In: Chen A, editor. StressResilience: Academic Press; 2020. p. 233-256.
Vasconcelos M, Stein DJ, Gallas-Lopes M,Landau L, De Almeida RMM. Corticotropin-releasing factor receptor signaling and modulation:implications for stress response and resilience.Trends Psychiatry Psychother. 2020; 42(2):195-206.
Hauger RL, Risbrough V, Oakley RH,Olivares-Reyes JA, Dautzenberg FM. Role of CRFReceptor Signaling in Stress Vulnerability, Anxiety,and Depression. Ann N Y Acad Sci. 2009; 1179(1):120-143.
Hauger RL, Olivares-Reyes JA, Braun S, Hernandez-Aranda J, Hudson CC, Gutknecht E, et al. Desensitization of human CRF2(a) receptor signaling governed by agonist potency and βarrestin2 recruitment. Regul Pept. 2013; 186:62-76.
Oakley RH, Olivares-Reyes JA, Hudson CC, Flores-Vega F, Dautzenberg FM, Hauger RL. Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and β-arrestin-2 recruitment: a mechanism regulating stress and anxiety responses. Am J Physiol Regul Integr Comp Physiol. 2007; 293(1):R209-R222.
Kohout TA, Lefkowitz RJ. Regulation of G Protein-Coupled Receptor Kinases and Arrestins During Receptor Desensitization. Mol Pharmacol. 2003; 63(1):9-18.
Moore CAC, Milano SK, Benovic JL. Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol. 2007; 69:451-482.
Binder EB, Nemeroff CB. The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry. 2010; 15(6):574-588.
Henckens MJ, Deussing JM, Chen A. Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci. 2016; 17(10):636-651.
Hauger RL, Olivares-Reyes JA, Dautzenberg FM, Lohr JB, Braun S, Oakley RH. Molecular and cell signaling targets for PTSD pathophysiology and pharmacotherapy. Neuropharmacology. 2012; 62(2):705-714.
Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nature Genetics. 2000; 24(4):410-414.
Kuperman Y, Chen A. Urocortins: emerging metabolic and energy homeostasis perspectives. Trends Endocrinol Metab. 2008; 19(4):122-129.
Chen A, Brar B, Choi CS, Rousso D, Vaughan J, Kuperman Y, et al. Urocortin 2 modulates glucose utilization and insulin sensitivity in skeletal muscle. Proc Natl Acad Sci. 2006; 103(44):16580-16585.
Chao H, Li H, Grande R, Lira V, Yan Z, Harris TE, et al. Involvement of mTOR in Type 2 CRF Receptor Inhibition of Insulin Signaling in Muscle Cells. Molecular Endocrinology. 2015; 29(6):831-841.
Li C, Chen P, Vaughan J, Lee KF, Vale W. Urocortin 3 regulates glucose-stimulated insulin secretion and energy homeostasis. Proc Natl Acad Sci. 2007; 104(10):4206-4211.
Van Der Meulen T, Donaldson CJ, Cáceres E, Hunter AE, Cowing-Zitron C, Pound LD, et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat Med. 2015; 21(7):769-776.
Dermitzaki E, Liapakis G, Androulidaki A, Venihaki M, Melissas J, Tsatsanis C, et al. Corticotrophin-Releasing Factor (CRF) and the Urocortins Are Potent Regulators of the Inflammatory Phenotype of Human and Mouse White Adipocytes and the Differentiation of Mouse 3T3L1 Pre-Adipocytes. PLoS ONE. 2014; 9(5):e97060.
Xiong Y, Qu Z, Chen N, Gong H, Song M, Chen X, et al. The local corticotropin-releasing hormone receptor 2 signalling pathway partly mediates hypoxia-induced increases in lipolysis via the cAMP–protein kinase A signalling pathway in white adipose tissue. Mol Cell Endocrinol. 2014; 392(1–2):106-114.
Lu B, Diz-Chaves Y, Markovic D, Contarino A, Penicaud L, Fanelli F, et al. The corticotrophin-releasing factor/urocortin system regulates white fat browning in mice through paracrine mechanisms. Int J Obes. 2015; 39(3):408-417.
Diaz I, Smani T. New insights into the mechanisms underlying vascular and cardiac effects of urocortin. Curr Vasc Pharmacol. 2013; 11(4):457-464.
Popov SV, Prokudina ES, Mukhomedzyanov AV, Naryzhnaya NV, Ma H, Zurmanova JM, et al. Cardioprotective and Vasoprotective Effects of Corticotropin-Releasing Hormone and Urocortins: Receptors and Signaling. J Cardiovasc Pharmacol Ther. 2021; 26(6):575-584.
Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017; 214(7):1877-1888.
Monteiro-Pinto C, Adão R, Leite-Moreira AF, Brás-Silva C. Cardiovascular Effects of Urocortin-2: Pathophysiological Mechanisms and Therapeutic Potential. Cardiovasc Drugs Ther. 2019; 33(5):599-613.
Chatzaki E, Kefala N, Drosos I, Lalidou F,Baritaki S. Do urocortins have a role in treatingcardiovascular disease? Drug Discovery Today.2019; 24(1):279-284.
Gravanis A, Margioris AN. The corticotropin-releasing factor (CRF) family of neuropeptides ininflammation: potential therapeutic applications.Curr Med Chem. 2005; 12(13):1503-1512.
Vecsernyés M, Kovács KJ, Tóth BE, Welke L,Nagy GM. New Aspects of the Immunoregulationby the Hypothalamo-Pituitary-Adrenal (HPA) Axis.Adv Neuroimmune Biol. 2012; 3:287-295.
Nezi M, Mastorakos G, Mouslech Z.Corticotropin Releasing Hormone And TheImmune/Inflammatory Response: MDText.com,Inc., South Dartmouth (MA); 2015 2000.
Im E. Multi-facets of Corticotropin-releasingFactor in Modulating Inflammation andAngiogenesis. J Neurogastroenterol Motil. 2015;21(1):025-032.
Moss AC, Anton P, Savidge T, Newman P,Cheifetz AS, Gay J, et al. Urocortin II mediates pro-inflammatory effects in human colonocytes viacorticotropin-releasing hormone receptor 2. Gut.2007; 56(9):1210-1217.
Baigent SM. Peripheral corticotropin-releasinghormone and urocortin in the control of the immuneresponse. Peptides. 2001; 22(5):809-820.
Gonzalez-Rey E, Delgado M. Anti-inflammatory neuropeptide receptors: newtherapeutic targets for immune disorders? TrendsPharmacol Sci. 2007; 28(9):482-491.
Chatzaki E, Charalampopoulos I, Leontidis C,Mouzas IA, Tzardi M, Tsatsanis C, et al. Urocortinin Human Gastric Mucosa: Relationship toInflammatory Activity. J Clin Endocrinol Metab.2003; 88(1):478-483.
Agnello D, Bertini R, Sacco S, Meazza C, VillaP, Ghezzi P. Corticosteroid-independent inhibitionof tumor necrosis factor production by theneuropeptide urocortin. Am J Physiol EndocrinolMetab. 1998; 275(5):E757-E762.
Tsatsanis C, Androulidaki A, Dermitzaki E,Charalampopoulos I, Spiess J, Gravanis A, et al.Urocortin 1 and Urocortin 2 induce macrophageapoptosis via CRFR2. FEBS Lett. 2005;579(20):4259-4264.
Liu X, Liu C, Li J, Zhang X, Song F, Xu J.Urocortin attenuates myocardial fibrosis in diabeticrats via the Akt/GSK-3beta signaling pathway. Endocr Res. 2016; 41(2):148-157.
Honjo T, Inoue N, Shiraki R, Kobayashi S,Otsui K, Takahashi M, et al. Endothelial UrocortinHas Potent Antioxidative Properties and IsUpregulated by Inflammatory Cytokines andPitavastatin. J Vasc Res. 2006; 43(2):131-138.
Steenblock C, Todorov V, Kanczkowski W,Eisenhofer G, Schedl A, Wong M-L, et al. Severeacute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. MolPsychiatry. 2020; 25(8):1611-1617.
Ding Y, He L, Zhang Q, Huang Z, Che X, HouJ, et al. Organ distribution of severe acuterespiratory syndrome (SARS) associatedcoronavirus (SARS-CoV) in SARS patients:implications for pathogenesis and virustransmission pathways. J Pathol. 2004; 203(2):622-630.
Bellastella G, Cirillo P, Carbone C,Scappaticcio L, Maio A, Botta G, et al.Neuroimmunoendocrinology of SARS-CoV-2Infection. Biomedicines. 2022; 10(11):2855.
Agarwal S, Agarwal SK. Endocrine changes inSARS-CoV-2 patients and lessons from SARS-CoV.Postgrad Med J. 2020; 96(1137):412-416.
Yavropoulou MP, Tsokos GC, Chrousos GP,Sfikakis PP. Protracted stress-inducedhypocortisolemia may account for the clinical andimmune manifestations of Long COVID. ClinImmunol. 2022; 245:109133.
Ho JC, Ooi GC, Mok TY, Chan JW, Hung I,Lam B, et al. High-Dose Pulse Versus NonpulseCorticosteroid Regimens in Severe AcuteRespiratory Syndrome. Am J Respir Crit Care Med.2003; 168(12):1449-1456.
Stockman LJ, Bellamy R, Garner P. SARS:Systematic Review of Treatment Effects. PLoSMed. 2006; 3(9):e343.
De Kloet AD, Cahill KM, Scott KA, KrauseEG. Overexpression of angiotensin convertingenzyme 2 reduces anxiety-like behavior in femalemice. Physiol Behav. 2020; 224:113002.
Alenina N, Bader M. ACE2 in BrainPhysiology and Pathophysiology: Evidence fromTransgenic Animal Models. Neurochem Res. 2019;44(6):1323-1329.
Wang LA, De Kloet AD, Smeltzer MD, CahillKM, Hiller H, Bruce EB, et al. Couplingcorticotropin-releasing-hormone and angiotensinconverting enzyme 2 dampens stress responsiveness in male mice. Neuropharmacology. 2018; 133:85-93.
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe Acute Respiratory Syndrome Coronavirus Infection Causes Neuronal Death in the Absence of Encephalitis in Mice Transgenic for Human ACE2. J Virol. 2008; 82(15):7264-7275.
Leow MK-S, Kwek DS-K, Ng AW-K, Ong K-C, Kaw GJ-L, Lee LS-U. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol. 2005; 63(2):197-202.
Rajkumar RP. Harnessing the Neurobiology of Resilience to Protect the Mental Well-Being of Healthcare Workers During the COVID-19 Pandemic. Front Psychol. 2021; 12(745):1-15.
Bailey CR, Cordell E, Sobin SM, Neumeister A. Recent Progress in Understanding the Pathophysiology of Post-Traumatic Stress Disorder. CNS Drugs. 2013; 27(3):221-232.