2022, Number 5
<< Back Next >>
Med Crit 2022; 36 (5)
Alternatives for sedation, analgesia, neuromuscular blockade and delirium in patients with COVID-19. A narrative review
Ferrer L, Díaz JC, Cárdenas YR, Vergara P, Rivera PM, Garay FM, Gil VBA, Vargas M, Meléndez FHJ, Dueñas CC
Language: Spanish
References: 119
Page: 296-311
PDF size: 423.13 Kb.
ABSTRACT
In recent years, the entire world has been faced with the management of patients with a totally new and challenging pathology in terms of its pathophysiological understanding and management strategies, while its rate of infection was increased significantly. It is the COVID-19 disease, caused by the SARS-CoV-2 virus, and that put all of humanity on alert. Therefore, major public health problems arose, including shortages of medicines and first-line resources for disease control, and in critical patients, optimal support management was affected as the complex immune response was overcome, which ended up affecting the lung parenchymal in its early stages, and depending on the physiological, morbid and genetic state of the host, generating multiple organ dysfunction. This document establishes the best alternatives to face a shortage of medications associated with the comprehensive approach to analgesia and sedation, prevention and management of delirium and withdrawal, and the need for neuromuscular relaxation in each of the phases that critically hospitalized patients go through in Intensive Care Units with invasive or non-invasive respiratory support.
REFERENCES
Madhok J, Mihm FG. Rethinking sedation during prolonged mechanical ventilation for COVID-19 respiratory failure. Anesth Analg. 2020;Publish Ah. doi: 10.1213/ANE.0000000000004960.
Hanidziar D, Bittner E. Sedation of mechanically ventilated COVID-19 patients: challenges and special considerations. Anesth Analg. 2020;131(1):e40-e41. doi: 10.1213/ANE.0000000000004887.
Sessler CN, Gosnell MS, Grap MJ, et al. The Richmond agitation-sedation scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166(10):1338-1344. doi:10.1164/rccm.2107138.
Celis-Rodríguez E, Díaz Cortés JC, Cárdenas Bolívar YR, et al. Evidence-based clinical practice guidelines for the management of sedoanalgesia and delirium in critically ill adult patients. Med intensiva. 2020;44(3):171-184. doi: 10.1016/j.medin.2019.07.013.
Devlin JW, Skrobik Y, Gélinas C, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):e825-e873. doi: 10.1097/CCM.0000000000003299.
Forel J-M, Roch A, Marin V, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34(11):2749-2757. doi: 10.1097/01.CCM.0000239435.87433.0D.
Papazian L, Forel J-M, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107-1116. doi: 10.1056/NEJMoa1005372.
Hraiech S, Forel J-M, Papazian L. The role of neuromuscular blockers in early ARDS. Clin Pulm Med. 2012;19(5):215-220. doi: 10.1097/CPM.0b013e3182673b41.
Szakmany T, Woodhouse T. Use of cisatracurium in critical care: a review of the literature. Minerva Anestesiol. 2015;81(4):450-460. http://www.ncbi.nlm.nih.gov/pubmed/24721895.
Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327-336. doi: 10.1056/NEJMoa032193.
Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-1308. doi: 10.1056/NEJM200005043421801.
Arroliga A, Frutos-Vivar F, Hall J, et al. Use of sedatives and neuromuscular blockers in a cohort of patients receiving mechanical ventilation. Chest. 2005;128(2):496-506. doi: 10.1378/chest.128.2.496.
Guérin C, Reignier J, Richard J-C, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-2168. doi: 10.1056/NEJMoa1214103.
Gainnier M, Roch A, Forel J-M, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2004;32(1):113-119. doi: 10.1097/01.CCM.0000104114.72614.BC.
Renew JR, Ratzlaff R, Hernandez-Torres V, Brull SJ, Prielipp RC. Neuromuscular blockade management in the critically ill patient. J Intensive Care. 2020;8(1):37. doi: 10.1186/s40560-020-00455-2.
Bilgili B, Montoya JC, Layon AJ, et al. Utilizing bi-spectral index (BIS) for the monitoring of sedated adult ICU patients: a systematic review. Minerva Anestesiol. 2017;83(3):288-301. doi: 10.23736/S0375-9393.16.10886-7.
Jerath A, Ferguson ND, Cuthbertson B. Inhalational volatile-based sedation for COVID-19 pneumonia and ARDS. Intensive Care Med. 2020;46(8):1563-1566. doi: 10.1007/s00134-020-06154-8.
De Conno E, Steurer MP, Wittlinger M, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110(6):1316-1326. doi: 10.1097/ALN.0b013e3181a10731.
Jabaudon M, Boucher P, Imhoff E, et al. Sevoflurane for sedation in acute respiratory distress syndrome. a randomized controlled pilot study. Am J Respir Crit Care Med. 2017;195(6):792-800. doi: 10.1164/rccm.201604-0686OC.
Ferrando C, Aguilar G, Piqueras L, Soro M, Moreno J, Belda FJ. Sevoflurane, but not propofol, reduces the lung inflammatory response and improves oxygenation in an acute respiratory distress syndrome model: a randomised laboratory study. Eur J Anaesthesiol. 2013;30(8):455-463. doi: 10.1097/EJA.0b013e32835f0aa5.
Jerath A, Parotto M, Wasowicz M, Ferguson ND. Volatile anesthetics. Is a new player emerging in critical care sedation? Am J Respir Crit Care Med. 2016;193(11):1202-1212. doi: 10.1164/rccm.201512-2435CP.
MacDonald JF, Miljkovic Z, Pennefather P. Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine. J Neurophysiol. 1987;58(2):251-266. doi: 10.1152/jn.1987.58.2.251.
Leal Filho MB, Morandin RC, de Almeida AR, et al. Importance of anesthesia for the genesis of neurogenic pulmonary edema in spinal cord injury. Neurosci Lett. 2005;373(2):165-170. doi: 10.1016/j.neulet.2004.10.019.
Zhu M, Zhou Q, Zhu M, et al. Effects of nebulized ketamine on allergen-induced airway hyperresponsiveness and inflammation in actively sensitized Brown-Norway rats. J Inflamm. 2007;4(1):10. doi: 10.1186/1476-9255-4-10.
Panahi Y, Mojtahedzadeh M, Najafi A, et al. The role of magnesium sulfate in the intensive care unit. EXCLI J. 2017;16:464-482. doi: 10.17179/excli2017-182.
Rodríguez-Rubio L, Nava E, Del Pozo JSG, Jordán J. Influence of the perioperative administration of magnesium sulfate on the total dose of anesthetics during general anesthesia. A systematic review and meta-analysis. J Clin Anesth. 2017;39:129-138. doi: 10.1016/j.jclinane.2017.03.038.
Rodríguez-Rubio L, Solis Garcia del Pozo J, Nava E, Jordán J. Interaction between magnesium sulfate and neuromuscular blockers during the perioperative period. A systematic review and meta-analysis. J Clin Anesth. 2016;34:524-534. doi: 10.1016/j.jclinane.2016.06.011.
Mistraletti G, Umbrello M, Salini S, et al. Enteral versus intravenous approach for the sedation of critically ill patients: a randomized and controlled trial. Crit Care. 2019;23(1):3. doi: 10.1186/s13054-018-2280-x.
Payen J-F, Chanques G, Futier E, Velly L, Jaber S, Constantin J-M. Sedation for critically ill patients with COVID-19: which specificities? One size does not fit all. Anaesthesia, Crit care pain Med. 2020;39(3):341-343. doi: 10.1016/j.accpm.2020.04.010.
Farrell NM, Hayes BD, Linden JA. Critical medication shortages further dwindling hospital resources during COVID-19. Am J Emerg Med. May 2020. doi: 10.1016/j.ajem.2020.05.059.
Fox ER, McLaughlin MM. ASHP guidelines on managing drug product shortages. Am J Health Syst Pharm. 2018;75(21):1742-1750. doi: 10.2146/ajhp180441.
Chen K, Lu Z, Xin YC, Cai Y, Chen Y, Pan SM. Alpha-2 agonists for long-term sedation during mechanical ventilation in critically ill patients. Cochrane database Syst Rev. 2015;1(1):CD010269. doi: 10.1002/14651858.CD010269.pub2.
Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263-306. doi: 10.1097/CCM.0b013e3182783b72.
Jakob SM, Ruokonen E, Grounds RM, et al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012;307(11):1151-1160. doi: 10.1001/jama.2012.304.
European Medicines Agency. Dexdor : EPAR-medicine overview. last updated on 29/05/2020. https://www.ema.europa.eu/en/medicines/human/EPAR/dexdor.
Pandharipande PP, Pun BT, Herr DL, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298(22):2644-2653. doi: 10.1001/jama.298.22.2644.
Riker RR, Shehabi Y, Bokesch PM, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489-499. doi: 10.1001/jama.2009.56.
Keating GM. Dexmedetomidine: a review of its use for sedation in the intensive care setting. Drugs. 2015;75(10):1119-1130. doi: 10.1007/s40265-015-0419-5.
Martinez D, Vanegas E, Perea A. Efectividad y Seguridad Del Clorhidrato de Dexmedetomidina Comparado Con Midazolam, Lorazepam, Propofol y Ketamina Para Pacientes Que Requieren Sedación En Unidad de Cuidados Intensivos.; 2014. http://www.iets.org.co/reportes-iets/Documentacin Reportes/Reporte dexmedetomidina.pdf.
Dieleman S, Moreno M, Díaz OMH, Vanegas EEP, Rodriguez PEE. Análisis de costo-efectividad del clorhidrato de dexmedetomidina comparada con propofol y midazolam para la sedación ligera a moderada de adultos con ventilación mecánica invasiva en unidades de Cuidado Intensivo de Colombia TT-cost-effectiveness analy.; 2016. doi: 10.13140/RG.2.2.23622.68160.
Cruickshank M, Henderson L, MacLennan G, et al. Alpha-2 agonists for sedation of mechanically ventilated adults in intensive care units: a systematic review. Health Technol Assess. 2016;20(25):v-xx, 1-117. doi: 10.3310/hta20250.
Gagnon DJ, Fontaine GV, Riker RR, Fraser GL. Repurposing valproate, enteral clonidine, and phenobarbital for comfort in adult ICU patients: a literature review with practical considerations. Pharmacotherapy. 2017;37(10):1309-1321. doi: 10.1002/phar.2017.
Wang JG, Belley-Coté E, Burry L, et al. Clonidine for sedation in the critically ill: a systematic review and meta-analysis. Crit Care. 2017;21(1):75. doi: 10.1186/s13054-017-1610-8.
Cohen IL, Gallagher TJ, Pohlman AS, Dasta JF, Abraham E, Papadokos PJ. Management of the agitated intensive care unit patient. Crit Care Med. 2002;30(1 2):S97-S123. doi: 10.1097/00003246-200201002-00001.
Chung J-Y, Cho J-Y, Yu K-S, et al. Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers. Clin Pharmacol Ther. 2005;77(6):486-494. doi: 10.1016/j.clpt.2005.02.006.
Horinek EL, Kiser TH, Fish DN, MacLaren R. Propylene glycol accumulation in critically ill patients receiving continuous intravenous lorazepam infusions. Ann Pharmacother. 2009;43(12):1964-1971. doi: 10.1345/aph.1M313.
Cernaianu AC, DelRossi AJ, Flum DR, et al. Lorazepam and midazolam in the intensive care unit: a randomized, prospective, multicenter study of hemodynamics, oxygen transport, efficacy, and cost. Crit Care Med. 1996;24(2):222-228. doi: 10.1097/00003246-199602000-00007.
Swart EL, van Schijndel RJ, van Loenen AC, Thijs LG. Continuous infusion of lorazepam versus medazolam in patients in the intensive care unit: sedation with lorazepam is easier to manage and is more cost-effective. Crit Care Med. 1999;27(8):1461-1465. doi: 10.1097/00003246-199908000-00009.
Wu X, Ji H, Wang Y, et al. Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 Axis. Oxid Med Cell Longev. 2019;2019:4087298. doi: 10.1155/2019/4087298.
Marra A, McGrane TJ, Henson CP, Pandharipande PP. Melatonin in Critical Care. Crit Care Clin. 2019;35(2):329-340. doi: 10.1016/j.ccc.2018.11.008.
Wilhelmsen M, Amirian I, Reiter RJ, Rosenberg J, Gogenur I. Analgesic effects of melatonin: a review of current evidence from experimental and clinical studies. J Pineal Res. 2011;51(3):270-277. doi: 10.1111/j.1600-079X.2011.00895.x.
Paul T, Lemmer B. Disturbance of circadian rhythms in analgosedated intensive care unit patients with and without craniocerebral injury. Chronobiol Int. 2007;24(1):45-61. doi: 10.1080/07420520601142569.
Mundigler G, Delle-Karth G, Koreny M, et al. Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med. 2002;30(3):536-540. doi: 10.1097/00003246-200203000-00007.
Olofsson K, Alling C, Lundberg D, Malmros C. Abolished circadian rhythm of melatonin secretion in sedated and artificially ventilated intensive care patients. Acta Anaesthesiol Scand. 2004;48(6):679-684. doi: 10.1111/j.0001-5172.2004.00401.x.
Perras B, Meier M, Dodt C. Light and darkness fail to regulate melatonin release in critically ill humans. Intensive Care Med. 2007;33(11):1954-1958. doi: 10.1007/s00134-007-0769-x.
Verceles AC, Silhan L, Terrin M, Netzer G, Shanholtz C, Scharf SM. Circadian rhythm disruption in severe sepsis: the effect of ambient light on urinary 6-sulfatoxymelatonin secretion. Intensive Care Med. 2012;38(5):804-810. doi: 10.1007/s00134-012-2494-3.
Lewis SR, Pritchard MW, Schofield-Robinson OJ, Alderson P, Smith AF. Melatonin for the promotion of sleep in adults in the intensive care unit. Cochrane database Syst Rev. 2018;5(5):CD012455. doi: 10.1002/14651858.CD012455.pub2.
Mistraletti G, Umbrello M, Sabbatini G, et al. Melatonin reduces the need for sedation in ICU patients: a randomized controlled trial. Minerva Anestesiol. 2015;81(12):1298-1310. http://www.ncbi.nlm.nih.gov/pubmed/25969139.
Cheng J, Yang H-L, Gu C-J, et al. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int J Mol Med. 2019;43(2):945-955. doi: 10.3892/ijmm.2018.4021.
Bourne RS, Mills GH, Minelli C. Melatonin therapy to improve nocturnal sleep in critically ill patients: encouraging results from a small randomised controlled trial. Crit Care. 2008;12(2):R52. doi: 10.1186/cc6871.
Mistraletti G, Sabbatini G, Taverna M, et al. Pharmacokinetics of orally administered melatonin in critically ill patients. J Pineal Res. 2010;48(2):142-147. doi: 10.1111/j.1600-079X.2009.00737.x.
Andersen LPH, Gogenur I, Rosenberg J, Reiter RJ. The Safety of Melatonin in Humans. Clin Drug Investig. 2016;36(3):169-175. doi: 10.1007/s40261-015-0368-5.
Haddad PM, Das A, Ashfaq M, Wieck A. A review of valproate in psychiatric practice. Expert Opin Drug Metab Toxicol. 2009;5(5):539-551. doi: 10.1517/17425250902911455.
Sher Y, Miller AC, Lolak S, Ament A, Maldonado JR. Adjunctive valproic acid in management-refractory hyperactive delirium: a case series and rationale. J Neuropsychiatry Clin Neurosci. 2015;27(4):365-370. doi: 10.1176/appi.neuropsych.14080190.
Gagnon DJ, Fontaine GV, Smith KE, et al. Valproate for agitation in critically ill patients: A retrospective study. J Crit Care. 2017;37:119-125. doi: 10.1016/j.jcrc.2016.09.006.
Fahron G, Martens F, Frei U. Phenobarbital: a good choice for long-term sedation. Crit Care. 2001;5(Suppl 1):P201. doi: 10.1186/cc1268.
Fraser GL, Riker RR. Phenobarbital provides effective sedation for a select cohort of adult ICU patients intolerant of standard treatment: a brief report. Hosp Pharm. 2006;41(1):17-23. doi: 10.1310/hpj4101-17.
Tidwell WP, Thomas TL, Pouliot JD, Canonico AE, Webber AJ. Treatment of alcohol withdrawal syndrome: phenobarbital vs CIWA-Ar protocol. Am J Crit Care. 2018;27(6):454-460. doi: 10.4037/ajcc2018745.
Mo Y, Thomas MC, Karras GE. Barbiturates for the treatment of alcohol withdrawal syndrome: A systematic review of clinical trials. J Crit Care. 2016;32:101-107. doi: 10.1016/j.jcrc.2015.11.022.
Reade MC, O'Sullivan K, Bates S, Goldsmith D, Ainslie WRSTJ, Bellomo R. Dexmedetomidine vs. haloperidol in delirious, agitated, intubated patients: a randomised open-label trial. Crit Care. 2009;13(3):R75. doi: 10.1186/cc7890.
Chanques G, Sebbane M, Constantin JM, et al. Analgesic efficacy and haemodynamic effects of nefopam in critically ill patients. Br J Anaesth. 2011;106(3):336-343. doi: 10.1093/bja/aeq375.
Payen J-F, Genty C, Mimoz O, Mantz J, Bosson J-L, Chanques G. Prescribing nonopioids in mechanically ventilated critically ill patients. J Crit Care. 2013;28(4):534.e7-12. doi: 10.1016/j.jcrc.2012.10.006.
Devlin JW, Roberts RJ. Pharmacology of commonly used analgesics and sedatives in the ICU: benzodiazepines, propofol, and opioids. Anesthesiol Clin. 2011;29(4):567-585. doi: 10.1016/j.anclin.2011.09.001.
Kovacevic MP, Szumita PM, Dube KM, DeGrado JR. Transition from continuous infusion fentanyl to hydromorphone in critically ill patients. J Pharm Pract. 2020;33(2):129-135. doi: 10.1177/0897190018786832.
Landolf KM, Rivosecchi RM, Goméz H, et al. Comparison of hydromorphone versus fentanyl-based sedation in extracorporeal membrane oxygenation: a propensity-matched analysis. Pharmacotherapy. 2020;40(5):389-397. doi: 10.1002/phar.2385.
Elefritz JL, Murphy C V, Papadimos TJ, Lyaker MR. Methadone analgesia in the critically ill. J Crit Care. 2016;34:84-88. doi: 10.1016/j.jcrc.2016.03.023.
Al-Qadheeb NS, Roberts RJ, Griffin R, Garpestad E, Ruthazer R, Devlin JW. Impact of enteral methadone on the ability to wean off continuously infused opioids in critically ill, mechanically ventilated adults: a case-control study. Ann Pharmacother. 2012;46(9):1160-1166. doi: 10.1345/aph.1R132.
Wanzuita R, Poli-de-Figueiredo LF, Pfuetzenreiter F, Cavalcanti AB, Westphal GA. Replacement of fentanyl infusion by enteral methadone decreases the weaning time from mechanical ventilation: a randomized controlled trial. Crit Care. 2012;16(2):R49. doi: 10.1186/cc11250.
Zhu Y, Wang Y, Du B, Xi X. Could remifentanil reduce duration of mechanical ventilation in comparison with other opioids for mechanically ventilated patients? A systematic review and meta-analysis. Crit Care. 2017;21(1):206. doi: 10.1186/s13054-017-1789-8.
Erstad BL, Patanwala AE. Ketamine for analgosedation in critically ill patients. J Crit Care. 2016;35:145-149. doi: 10.1016/j.jcrc.2016.05.016.
Guillou N, Tanguy M, Seguin P, Branger B, Campion JP, Mallédant Y. The effects of small-dose ketamine on morphine consumption in surgical intensive care unit patients after major abdominal surgery. Anesth Analg. 2003;97(3):843-847. doi: 10.1213/01.ane.0000075837.67275.36.
Buchheit JL, Yeh DD, Eikermann M, Lin H. Impact of low-dose ketamine on the usage of continuous opioid infusion for the treatment of pain in adult mechanically ventilated patients in surgical Intensive Care Units. J Intensive Care Med. 2019;34(8):646-651. doi: 10.1177/0885066617706907.
Perbet S, Verdonk F, Godet T, et al. Low doses of ketamine reduce delirium but not opiate consumption in mechanically ventilated and sedated ICU patients: A randomised double-blind control trial. Anaesthesia, Crit care pain Med. 2018;37(6):589-595. doi: 10.1016/j.accpm.2018.09.006.
Patanwala AE, Martin JR, Erstad BL. Ketamine for analgosedation in the Intensive Care Unit: a systematic review. J Intensive Care Med. 2017;32(6):387-395. doi: 10.1177/0885066615620592.
Jo C. Anesthesia. In: Bagheri SC, Jo CBT-CR of O and MS, eds. Clinical Review of Oral and Maxillofacial Surgery. Saint Louis: Elsevier; 2008:45-63. doi: 10.1016/B978-0-323-04574-2.50008-9.
Celis-Rodríguez E, Birchenall C, de la Cal MÁ, et al. Clinical practice guidelines for evidence-based management of sedoanalgesia in critically ill adult patients. Med Intensiva. 2013;37(8):519-574. doi: 10.1016/j.medin.2013.04.001.
Mehta S, Burry L, Martinez-Motta JC, et al. A randomized trial of daily awakening in critically ill patients managed with a sedation protocol: a pilot trial. Crit Care Med. 2008;36(7):2092-2099. doi: 10.1097/CCM.0b013e31817bff85.
Strom T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet (London, England). 2010;375(9713):475-480. doi: 10.1016/S0140-6736(09)62072-9.
Breen D, Karabinis A, Malbrain M, et al. Decreased duration of mechanical ventilation when comparing analgesia-based sedation using remifentanil with standard hypnotic-based sedation for up to 10 days in intensive care unit patients: a randomised trial [ISRCTN47583497]. Crit Care. 2005;9(3):R200-10. doi: 10.1186/cc3495.
Mirski MA, Lewin JJ, Ledroux S, et al. Cognitive improvement during continuous sedation in critically ill, awake and responsive patients: the Acute Neurological ICU Sedation Trial (ANIST). Intensive Care Med. 2010;36(9):1505-1513. doi: 10.1007/s00134-010-1874-9.
Augustes R, Ho KM. Meta-analysis of randomised controlled trials on daily sedation interruption for critically ill adult patients. Anaesth Intensive Care. 2011;39(3):401-409. doi: 10.1177/0310057X1103900310.
Shen Y-Z, Peng K, Zhang J, Meng X-W, Ji F-H. Effects of Haloperidol on Delirium in Adult Patients: A Systematic Review and Meta-Analysis. Med Princ Pract. 2018;27(3):250-259. doi: 10.1159/000488243.
Constantin J-M, Momon A, Mantz J, et al. Efficacy and safety of sedation with dexmedetomidine in critical care patients: a meta-analysis of randomized controlled trials. Anaesthesia, Crit care pain Med. 2016;35(1):7-15. doi: 10.1016/j.accpm.2015.06.012.
Olsen HT, Nedergaard HK, Strøm T, et al. Nonsedation or light sedation in critically ill, mechanically ventilated patients. N Engl J Med. 2020;382(12):1103-1111. doi: 10.1056/NEJMoa1906759.
de Wit M, Gennings C, Jenvey WI, Epstein SK. Randomized trial comparing daily interruption of sedation and nursing-implemented sedation algorithm in medical intensive care unit patients. Crit Care. 2008;12(3):R70. doi: 10.1186/cc6908.
Venn RM, Grounds RM. Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: patient and clinician perceptions. Br J Anaesth. 2001;87(5):684-690. doi: 10.1093/bja/87.5.684.
Hov KR, Neerland BE, Andersen AM, et al. The use of clonidine in elderly patients with delirium; pharmacokinetics and hemodynamic responses. BMC Pharmacol Toxicol. 2018;19(1):29. doi: 10.1186/s40360-018-0218-1.
Ostermann ME, Keenan SP, Seiferling RA, Sibbald WJ. Sedation in the intensive care unit: a systematic review. JAMA. 2000;283(11):1451-1459. doi: 10.1001/jama.283.11.1451.
Aldecoa C, Bettelli G, Bilotta F, et al. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol. 2017;34(4):192-214. doi: 10.1097/EJA.0000000000000594.
Freeman S, Yorke J, Dark P. Patient agitation and its management in adult critical care: A integrative review and narrative synthesis. J Clin Nurs. 2018;27(7-8):e1284-e1308. doi: 10.1111/jocn.14258.
Andrews LJ, Benken ST. COVID-19: ICU delirium management during SARS-CoV-2 pandemic-pharmacological considerations. Crit Care. 2020;24(1):375. doi: 10.1186/s13054-020-03072-5.
Reade MC, O'Sullivan K, Bates S, Goldsmith D, Ainslie WR, Bellomo R. Dexmedetomidine vs haloperidol in delirious, agitated, intubated patients: a randomised open-label trial. Crit Care. 2009;13(3):R75. doi: 10.1186/cc7890.
Rivière J, van der Mast RC, Vandenberghe J, Van Den Eede F. Efficacy and tolerability of atypical antipsychotics in the treatment of delirium: a systematic review of the literature. Psychosomatics. 2019;60(1):18-26. doi: 10.1016/j.psym.2018.05.011.
Soh M, Hifumi T, Isokawa S, Shimizu M, Otani N, Ishimatsu S. Neuroleptic malignant syndrome in patients with COVID-19. Am J Emerg Med. May 2020. doi: 10.1016/j.ajem.2020.05.042.
Cipriani G, Danti S, Nuti A, Carlesi C, Lucetti C, Di Fiorino M. A complication of coronavirus disease 2019: delirium. Acta Neurol Belg. 2020;120(4):927-932. doi: 10.1007/s13760-020-01401-7.
Beach SR, Praschan NC, Hogan C, et al. Delirium in COVID-19: a case series and exploration of potential mechanisms for central nervous system involvement. Gen Hosp Psychiatry. 2020;65:47-53. doi: 10.1016/j.genhosppsych.2020.05.008.
Boettger S, Jenewein J, Breitbart W. Haloperidol, risperidone, olanzapine and aripiprazole in the management of delirium: A comparison of efficacy, safety, and side effects. Palliat Support Care. 2015;13(4):1079-1085. doi: 10.1017/S1478951514001059.
Meagher D, Adamis D, Timmons S, et al. Developing a guidance resource for managing delirium in patients with COVID-19. Ir J Psychol Med. 2021;38(3):208-213. doi: 10.1017/ipm.2020.71.
Dupuis S, Brindamour D, Karzon S, et al. A systematic review of interventions to facilitate extubation in patients difficult-to-wean due to delirium, agitation, or anxiety and a meta-analysis of the effect of dexmedetomidine. Can J Anaesth. 2019;66(3):318-327. doi: 10.1007/s12630-018-01289-1.
Pasin L, Landoni G, Nardelli P, et al. Dexmedetomidine reduces the risk of delirium, agitation and confusion in critically Ill patients: a meta-analysis of randomized controlled trials. J Cardiothorac Vasc Anesth. 2014;28(6):1459-1466. doi: 10.1053/j.jvca.2014.03.010.
Baumgartner L, Lam K, Lai J, et al. Effectiveness of melatonin for the prevention of intensive care unit delirium. Pharmacotherapy. 2019;39(3):280-287. doi: 10.1002/phar.2222.
Zambrelli E, Canevini M, Gambini O, D'Agostino A. Delirium and sleep disturbances in COVID-19: a possible role for melatonin in hospitalized patients? Sleep Med. 2020;70:111. doi: 10.1016/j.sleep.2020.04.006.
Crowley KE, Urben L, Hacobian G, Geiger KL. Valproic acid for the management of agitation and delirium in the intensive care setting: a retrospective analysis. Clin Ther. 2020;42(4):e65-e73. doi: 10.1016/j.clinthera.2020.02.007.
Hosseini AA, Shetty AK, Sprigg N, Auer DP, Constantinescu CS. Delirium as a presenting feature in COVID-19: Neuroinvasive infection or autoimmune encephalopathy? Brain Behav Immun. 2020;88:68-70. doi: 10.1016/j.bbi.2020.06.012.
Skrobik Y, Duprey MS, Hill NS, Devlin JW. Low-dose nocturnal dexmedetomidine prevents ICU delirium. A randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2018;197(9):1147-1156. doi: 10.1164/rccm.201710-1995OC.
Flükiger J, Hollinger A, Speich B, et al. Dexmedetomidine in prevention and treatment of postoperative and intensive care unit delirium: a systematic review and meta-analysis. Ann Intensive Care. 2018;8(1):92. doi: 10.1186/s13613-018-0437-z.
Neufeld KJ, Yue J, Robinson TN, Inouye SK, Needham DM. Antipsychotic medication for prevention and treatment of delirium in hospitalized adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2016;64(4):705-714. doi: 10.1111/jgs.14076.
Liverpool U of. COVID-19 drug interactions. [Accessed July 19, 2020] Available in: https://www.covid19-druginteractions.org/checker
Kotfis K, Williams Roberson S, Wilson JE, Dabrowski W, Pun BT, Ely EW. COVID-19: ICU delirium management during SARS-CoV-2 pandemic. Crit Care. 2020;24(1):176. doi: 10.1186/s13054-020-02882-x.