2021, Number 3
<< Back Next >>
Rev Educ Bioquimica 2021; 40 (3)
TOR (Target of Rapamycin): Emperador en la toma de decisiones que regula el crecimiento y desarrollo de las plantas
Salazar DK, Tzvetanka DD
Language: Spanish
References: 44
Page: 100-110
PDF size: 484.26 Kb.
ABSTRACT
The Target Of Rapamycin (TOR) pathway is essential for the integration of environmental
signals, nutrients and energy availability with growth factors control on
development and differentiation in eukaryotic organisms. Discovery and characterization
of the pathway in plants is more recent and has been poorly studied in crops.
Specifically, a pathway similar to that corresponding to the mammalian TORC1 complex
was described, but with peculiarities of the plant lineage involving responses
to phytohormones and light, stress adaptation and plant life span control. TOR has
important impacts on the metabolic profile, cell proliferation/differentiation balance
and coordination of gene expression in response to glucose, auxins and stress. Here
we describe the main components of the TOR pathway discovered in the model plant
Arabidopsis, upstream of TOR signaling, downstream processes regulation, and present
some of the findings as an attractive target for crop improvement.
REFERENCES
Fonseca, B.D., Graber, T.G., Hoang, H.D., González, A., Hernández, G., Alain, T., Swift, S.L., Weisman, R., Meyer, C., Robaglia, C., et al. (2016). Evolution of TOR and translation control. En: Evolution of the Protein Synthesis Machinery and Its Regulation. Editor: Springer International Publishing, Suiza, pp 327–411.
Shi, L., Wu, Y., and Sheen, J. (2018). TOR signaling in plants: conservation and innovation. Development 145.
Heitman J, Movva NR, Hall MN (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905-909.
Martin, D.E., and Hall, M.N. (2005). The expanding TOR signaling network. Curr. Opin. Cell Biol. 17:158–166.
Sarbassov, D.D., Ali, S.M., Kim, D.-H., Guertin, D.A., Latek, R.R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14:1296–1302.
Menand, B., Desnos, T., Nussaume, L., Berger, F., Bouchez, D., Meyer, C., and Robaglia, C. (2002). Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc. Natl. Acad. Sci. U.S.A. 99: 6422–6427.
Sabers, C.J., Martin, M.M., Brunn, G.J., Williams, J.M., Dumont, F.J., Wiederrecht, G., and Abraham, R.T. (1995). Isolation of a Protein Target of the FKBP12-Rapamycin Complex in Mammalian Cells. J. Biol. Chem. 270:815–822.
Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell 124:471–484.
Schalm, S.S., and Blenis, J. (2002). Identification of a conserved motif required for mTOR signaling. Curr. Biol. 12:632–639.
Yang, H., Rudge, D.G., Koos, J.D., Vaidialingam, B., Yang, H.J., and Pavletich, N.P. (2013). mTOR kinase structure, mechanism and regulation. Nature 497:217–223.
Luo, Y., Xu, W., Li, G., and Cui, W. (2018). Weighing In on mTOR Complex 2 Signaling: The Expanding Role in Cell Metabolism. OXID 2018:15.
Agredano-Moreno, L.T., Reyes de la Cruz, H., Martínez-Castilla, L.P., and Sánchez de Jiménez, E. (2007). Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog. Mol Biosyst 3:794–802.
Anderson, G.H., Veit, B., and Hanson, M.R. (2005). The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol. 3:12.
Moreau, M., Azzopardi, M., Clément, G., Dobrenel, T., Marchive, C., Renne, C., Martin- Magniette, M.-L., Taconnat, L., Renou, J.-P., Robaglia, C., et al. (2012). Mutations in the Arabidopsis Homolog of LST8/GβL, a Partner of the Target of Rapamycin Kinase, Impair Plant Growth, Flowering, and Metabolic Adaptation to Long Days. Plant Cell 24:463–481.
Salem, M.A., Li, Y., Bajdzienko, K., Fisahn, J., Watanabe, M., Hoefgen, R., Schöttler, M.A., and Giavalisco, P. (2018). RAPTOR Controls Developmental Growth Transitions by Altering the Hormonal and Metabolic Balance. Plant Physiol. 177:565–593.
Couso, I., Pérez-Pérez, M.E., Ford, M.M., Martínez-Force, E., Hicks, L.M., Umen, J.G., and Crespo, J.L. (2020). Phosphorus Availability Regulates TORC1 Signaling via LST8 in Chlamydomonas. Plant Cell 32:69–80.
Díaz-Granados, V.H., López-López, J.M., Flores-Sánchez, J., Olguin-Alor, R., Bedoya- López, A., Dinkova, T.D., Salazar-Díaz, K., Vázquez-Santana, S., Vázquez-Ramos, J.M., and Lara-Núñez, A. (2020). Glucose modulates proliferation in root apical meristems via TOR in maize during germination. Plant Physiology and Biochemistry 155:126–135.
Montané, M.-H., and Menand, B. (2013). ATPcompetitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. J. Exp. Bot. 64:4361–4374.
Deprost, D., Yao, L., Sormani, R., Moreau, M., Leterreux, G., Nicolaï, M., Bedu, M., Robaglia, C., and Meyer, C. (2007). The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep. 8. 864–870.
Ren, M., Venglat, P., Qiu, S., Feng, L., Cao, Y., Wang, E., Xiang, D., Wang, J., Alexander, D., Chalivendra, S., et al. (2012). Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24:4850–4874.
Ma, X.M., and Blenis, J. (2009). Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10:307–318.
Ren, M., Qiu, S., Venglat, P., Xiang, D., Feng, L., Selvaraj, G., and Datla, R. (2011). Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. Plant Physiol. 155:1367–1382.
Kim, Y.-K., Kim, S., Shin, Y., Hur, Y.-S., Kim, W.-Y., Lee, M.-S., Cheon, C.-I., and Verma, D.P.S. (2014). Ribosomal Protein S6, a Target of Rapamycin, Is Involved in the Regulation of rRNA Genes by Possible Epigenetic Changes in Arabidopsis. J Biol Chem 289:3901–3912.
Dobrenel, T., Mancera-Martínez, E., Forzani, C., Azzopardi, M., Davanture, M., Moreau, M., Schepetilnikov, M., Chicher, J., Langella, O., Zivy, M., et al. (2016). The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6. Front Plant Sci 7: 1611.
Jiménez-López, S., Mancera-Martínez, E., Donayre-Torres, A., Rangel, C., Uribe, L., March, S., Jiménez-Sánchez, G., and Sánchez de Jiménez, E. (2011). Expression profile of maize (Zea mays L.) embryonic axes during germination: translational regulation of ribosomal protein mRNAs. Plant Cell Physiol. 52:1719–1733.
Schepetilnikov, M., Kobayashi, K., Geldreich, A., Caranta, C., Robaglia, C., Keller, M., and Ryabova, L.A. (2011). Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. EMBO J. 30:1343– 1356.
Dinkova, T.D., Cruz, H.R.D.L., García-Flores, C., Aguilar, R., Jiménez-García, L.F., and Jiménez, E.S.D. (2007). Dissecting the TOR– S6K signal transduction pathway in maize seedlings: relevance on cell growth regulation. Physiologia Plantarum 130:1–10.
Schepetilnikov, M., Dimitrova, M., Mancera- Martínez, E., Geldreich, A., Keller, M., and Ryabova, L.A. (2013). TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J. 32:1087–1102.
von Arnim, A.G., Jia, Q., and Vaughn, J.N. (2014). Regulation of plant translation by upstream open reading frames. Plant Sci. 214:1–12.
Horst, S. van der, Filipovska, T., Hanson, J., and Smeekens, S. (2020). Metabolite Control of Translation by Conserved Peptide uORFs: The Ribosome as a Metabolite Multisensor. Plant Physiology 182:110–122.
Deng, K., Dong, P., Wang, W., Feng, L., Xiong, F., Wang, K., Zhang, S., Feng, S., Wang, B., Zhang, J., et al. (2017). The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato. Front Plant Sci 8.
Dong, P., Xiong, F., Que, Y., Wang, K., Yu, L., Li, Z., and Ren, M. (2015). Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Front. Plant Sci. 6: 677.
Xiong, Y., McCormack, M., Li, L., Hall, Q., Xiang, C., and Sheen, J. (2013). Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181–186.
Li, X., Cai, W., Liu, Y., Li, H., Fu, L., Liu, Z., Xu, L., Liu, H., Xu, T., and Xiong, Y. (2017). Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proc. Natl. Acad. Sci. U.S.A. 114:2765–2770.
Caldana, C., Li, Y., Leisse, A., Zhang, Y., Bartholomaeus, L., Fernie, A.R., Willmitzer, L., and Giavalisco, P. (2013). Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J. 73:897–909.
Jacinto, E., and Hall, M.N. (2003). Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 4:117–126.
Rexin, D., Meyer, C., Robaglia, C., and Veit, B. (2015). TOR signalling in plants. Biochem. J. 470:1–14.
Bögre L, Henriques R, Magyar Z. (2013). TOR tour to auxin. EMBO J. 8:1069-1071.
Xiong, Y., and Sheen, J. (2015). Novel links in the plant TOR kinase signaling network. Curr. Opin. Plant Biol. 28:83–91.
Dong, Y., Silbermann, M., Speiser, A., Forieri, I., Linster, E., Poschet, G., Allboje Samami, A., Wanatabe, M., Sticht, C., Teleman, A.A., et al. (2017). Sulfur availability regulates plant growth via glucose-TOR signaling. Nat Commun 8:1174.
Schepetilnikov, M., Makarian, J., Srour, O., Geldreich, A., Yang, Z., Chicher, J., Hammann, P., and Ryabova, L.A. (2017). GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin. EMBO J 36:886–903.
Turck, F., Zilbermann, F., Kozma, S.C., Thomas, G., and Nagy, F. (2004). Phytohormones Participate in an S6 Kinase Signal Transduction Pathway in Arabidopsis. Plant. Physiol. 134: 1527–1535.
Wang, P., Zhao, Y., Li, Z., Hsu, C.-C., Liu, X., Fu, L., Hou, Y.-J., Du, Y., Xie, S., Zhang, C., et al. (2018). Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response. Mol. Cell 69:100-112.
Bakshi, A., Moin, M., Kumar, M.U., Reddy, A.B.M., Ren, M., Datla, R., Siddiq, E.A., and Kirti, P.B. (2017). Ectopic expression of Arabidopsis Target of Rapamycin (AtTOR) improves water-use efficiency and yield potential in rice. Sci Rep 7:42835.