2021, Número 3
<< Anterior Siguiente >>
Rev Educ Bioquimica 2021; 40 (3)
Un vistazo a la morfología y dinámica de la mitocondria y a los sitios de producción de las especies reactivas de oxígeno
Matus OG, Pardo JP, Guerra SG, Buendía CK, Matus OM, González J, Luqueño BOI, Vázquez CM, Romero AL
Idioma: Español
Referencias bibliográficas: 69
Paginas: 111-127
Archivo PDF: 847.49 Kb.
RESUMEN
Las mitocondrias son organelos celulares altamente compartimentalizados, capaces
de adaptar su metabolismo a través de eventos de fisión y fusión y que les permite
adoptar morfologías alargadas, interconectadas o fragmentadas. Tienen su propio
genoma y se encargan de sintetizar energía en forma de ATP a través de la fosforilación
oxidativa. Es probable que la mitocondria sea el mayor generador de especies
reactivas de oxígeno (ROS) en la célula, por lo que es fundamental conocer la contribución
de cada uno de los complejos respiratorios y de las enzimas mitocondriales
(deshidrogenasas) en la producción de ROS. En esta revisión se abordan conceptos
clásicos y se describen nuevas complejidades de la función, la morfología y el metabolismo
mitocondrial, como la formación de las redes mitocondriales, la estructura
de las crestas, la formación de los supercomplejos respiratorios, los procesos de
fusión y fisión, la interacción con el retículo endoplásmico, y la producción de ROS
en la cadena respiratoria y en otras enzimas de la matriz mitocondrial.
REFERENCIAS (EN ESTE ARTÍCULO)
Margulis L. Origin of eukaryotic cells: evidence and research implications for a theory of the origin and evolution of microbial, plant, and animal cells on the Precambrian Earth. New Haven: Yale University Press; 1970. 349 p.
Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. The Biochemical journal. 1972 Jul;128(3):617–30.
Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature. 1961 Jul 8;191:144–8.
Kadenbach B, Ramzan R, Wen L, Vogt S. New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms. Biochimica et biophysica acta. 2010 Mar;1800(3):205–12.
Nelson DL, Cox MM. Lehninger principles of biochemistry. Seventh edition. New York, NY : Houndmills, Basingstoke: W.H. Freeman and Company ; Macmillan Higher Education; 2017. 1172 p.
Singer SJ, Nicolson GL. The structure and chemistry of mammalian cell membranes. The American journal of pathology. 1971 Nov;65(2):427–37.
Schagger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. The EMBO journal. 2000 Apr 17;19(8):1777–83.
Schafer E, Dencher NA, Vonck J, Parcej DN. Three-dimensional structure of the respiratory chain supercomplex I1III2IV1 from bovine heart mitochondria. Biochemistry. 2007 Nov 6;46(44):12579–85.
Bianchi C, Genova ML, Parenti Castelli G, Lenaz G. The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. The Journal of biological chemistry. 2004 Aug 27;279(35):36562–9.
Davies KM, Blum TB, Kühlbrandt W. Conserver in situ arrangement of complex I andIII2 in mitochondrial respiratory chain supercomplexes of mammals, yeast, and plants. Proc Natl Acad Sci USA. 2018 Mar 20;115(12): 3024-3029.
Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales- Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, ScorranoL. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013 Sep 26;155(1):160–71.
Chaban Y, Boekema EJ, Dudkina NV. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochimica et biophysica acta. 2014 Apr;1837(4):418–26.
Strogolova V, Furness A, Robb-McGrath M, Garlich J, Stuart RA. Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex. Molecular and cellular biology. 2012 Apr;32(8):1363–73.
Davoudi M, Kotarsky H, Hansson E, Kallijarvi J, Fellman V. COX7A2L/SCAFI and Pre- Complex III Modify Respiratory Chain Supercomplex Formation in Different Mouse Strains with a Bcs1l Mutation. PloS one. 2016;11(12):e0168774.
Singhal RK, Kruse C, Heidler J, Strecker V, Zwicker K, Düsterwald L, Westermann B, Herrmann JM, Witting I, Rapaport D. Coi1 is a novel assembly factor of the yeast complex III-complex IV supercomplex. Molecular biology of the cell. 2017 Aug 9; 28 (20): 2609- 22.
Acehan D, Malhotra A, Xu Y, Ren M, Stokes DL, Schlame M. Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys J. 2011 May 4;100(9):2184–92.
Baker CD, Basu Ball W, Pryce EN, Gohil VM. Specific requirements of nonbilayer phospholipids in mitochondrial respiratory chain function and formation. Mol Biol Cell. 2016 Jul 15;27(14):2161–71.
Griparic L, van der Bliek AM. The many shapes of mitochondrial membranes. Traffic. 2001 Apr;2(4):235–44.
Collins TJ, Berridge MJ, Lipp P, Bootman MD. Mitochondria are morphologically and functionally heterogeneous within cells. The EMBO journal. 2002 Apr 2;21(7):1616–27.
Lee S, Min K-T. The Interface Between ER and Mitochondria: Molecular Compositions a n d F u n c t i o n s . M o l C e l l s . 2 0 1 8 D e c 31;41(12):1000–7.
de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008 Dec 4;456(7222):605–10.
McLelland G-L, Goiran T, Yi W, Dorval G, Chen CX, Lauinger ND, Kranhn AI, Valimerhr S, Rakovic A, Rouiller I, Durcan TM, Trempe JF, Fon EA. Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. Elife. 2018 20;7.
Iwasawa R, Mahul-Mellier A-L, Datler C, Pazarentzos E, Grimm S. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 2011 Feb 2;30(3):556–68.
Yu T, Fox RJ, Burwell LS, Yoon Y. Regulation of mitochondrial fission and apoptosis by the mitochondrial outer membrane protein hFis1. J Cell Sci. 2005 Sep 15;118(Pt 18):4141–51.
Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 2006 Dec 18;175(6):901–11.
Honrath B, Metz I, Bendridi N, Rieusset J, Culmsee C, Dolga AM. Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov. 2017;3:17076.
Gomez-Suaga P, Paillusson S, Stoica R, Noble W, Hanger DP, Miller CCJ. The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy. Curr Biol. 2017 Feb 6;27(3):371– 85.
Galmes R, Houcine A, van Vliet AR, Agostinis P, Jackson CL, Giordano F. ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO Rep. 2016;17(6):800–10.
Scott I, Youle RJ. Mitochondrial fission and fusion. Essays in biochemistry. 2010;47:85– 98.
Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular mechanisms. Essays in biochemistry. 2018 Jul 20;62(3):341–60.
Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21(4):204–24.
Sabouny R, Shutt TE. Reciprocal Regulation of Mitochondrial Fission and Fusion. Trends in biochemical sciences. 2020 Jul;45(7):564–77.
Fu W, Liu Y, Yin H. Mitochondrial Dynamics: Biogenesis, Fission, Fusion, and Mitophagy in the Regulation of Stem Cell Behaviors. Stem Cells Int. 2019;2019:9757201.
Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003 Jan 20;160(2):189–200.
Griparic L, van der Wel NN, Orozco IJ, Peters PJ, van der Bliek AM. Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem. 2004 Apr 30;279(18):18792–8.
Hung CH-L, Cheng SS-Y, Cheung Y-T, Wuwongse S, Zhang NQ, Ho Y-S, Lee SM, Chang RC. A reciprocal relationship between reactive oxygen species and mitochondrial dynamics in neurodegeneration. Redox Biol. 2018;14:7–19.
Song Z, Chen H, Fiket M, Alexander C, Chan DC. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 2007 Aug 27;178(5):749–55.
Rampelt H, Zerbes RM, van der Laan M, Pfanner N. Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochimica et biophysica acta Molecular cell research. 2017 Apr;1864(4):737–46.
Zick M, Rabl R, Reichert AS. Cristae formationlinking ultrastructure and function of mitochondria. Biochimica et biophysica acta. 2009 Jan;1793(1):5–19.
Mannella CA. Structure and dynamics of the mitochondrial inner membrane cristae. Biochimica et biophysica acta. 2006 Jun;1763(5–6):542–8.
Gieffers C, Korioth F, Heimann P, Ungermann C, Frey J. Mitofilin is a transmembrane protein of the inner mitochondrial membrane expressed as two isoforms. Experimental cell research. 1997 May 1;232(2):395–9.
Muñoz-Gómez SA, Slamovits CH, Dacks JB, Baier KA, Spencer KD, Wideman JG. Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Current biology : CB. 2015 Jun 1;25(11):1489–95.
Kozjak-Pavlovic V. The MICOS complex of human mitochondria. Cell and tissue research. 2017 Jan;367(1):83–93.
Cogl i ati S, Enri quez JA, Scorrano L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends in biochemical sciences. 2016 Mar;41(3):261–73.
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015 Jan 21;85(2):257–73.
Quintana-Cabrera R, Mehrotra A, Rigoni G, Soriano ME. Who and how in the regulation of mitochondrial cristae shape and function. Biochemical and biophysical research communications. 2018 May 27;500(1):94– 101.
Kanamaru Y, Sekine S, Ichijo H, Takeda K. The phosphorylation-dependent regulation of mitochondrial proteins in stress responses. J Signal Transduct. 2012;2012:931215.
Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol. 2009 Dec 28;187(7):959–66.
Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D’Adamio L, Derks C, Dejaegere T, Pellegrini L, D’Hoose R, Scorrano L, De Strooper B. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell. 2006 Jul 14;126(1):163–75.
Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. The Journal of biological chemistry. 2015 Jan 2;290(1):209–27.
Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. The Journal of biological chemistry. 2012 Aug 3;287(32):27255–64.
Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox biology. 2013;1:304–12.
Mailloux RJ. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox biology. 2015;4:381–98.
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free radical biology & medicine. 2016 Nov;100:14– 31.
Ramzan R, Staniek K, Kadenbach B, Vogt S. Mitochondrial respiration and membrane potential are regulated by the allosteric ATPinhibition of cytochrome c oxidase. Biochimica et biophysica acta. 2010 Sep;1797(9):1672– 80.
Nulton-Persson AC, Starke DW, Mieyal JJ, Szweda LI. Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry. 2003 Apr 15;42(14):4235–42.
Adjeitey CN, Mailloux RJ, Dekemp RA, Harper ME. Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production. Am J Physiol Endocrinol Metab. 2013 Aug 1;305(3):E405-15.
Quinlan CL, Goncalves RL, Hey-Mogensen M, Yadava N, Bunik VI, Brand MD. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. The Journal of biological chemistry. 2014 Mar 21;289(12):8312–25.
Segal AW. How neutrophils kill microbes. Annual review of immunology. 2005;23:197– 223.
Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. Journal of leukocyte biology. 2013 Feb;93(2):185–98.
Dröge W. Free Radicals in the Physiological Control of Cell Function. Physiological Reviews. 2002 Jan 1;82(1):47–95.
Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annual review of pathology. 2014;9:119–45.
Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circulation research. 1994 Jun;74(6):1141–8.
Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science. 1995 Oct 13;270(5234):296–9.
Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem. 1997 Jan 3;272(1):217–21.
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012 Jan;5(1):9–19.
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROSinduced ROS release. Physiological reviews. 2014 Jul;94(3):909–50.
Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK, Karlsson C, Dalin MG, Akyürek LM, Lindahl P, Nilsson J, Bergo MO. Antioxidants can increase melanoma metastasis in mice. Science translational medicine. 2015 Oct 7;7(308):308re8.
Diebold L, Chandel NS. Mitochondrial ROS regulation of proliferating cells. Free radical biology & medicine. 2016 Nov;100:86–93.