2021, Número 3
<< Anterior Siguiente >>
Rev Educ Bioquimica 2021; 40 (3)
El papel del ácido sialico en el desarrollo del cáncer de mama
Santiago OBL, Fernández RB, Hernández JJ, Gallego Velasco IB, García-Cruz LM, Hernández–Cruz PA
Idioma: Español
Referencias bibliográficas: 36
Paginas: 89-99
Archivo PDF: 432.64 Kb.
RESUMEN
Los ácidos siálicos se encuentran típicamente como ramas terminales de N-glicanos,
O-glicanos y gangliósidos de glucoesfingolípidos y ocasionalmente tapando las cadenas
laterales de los anclajes de glicosilfosfatidilinositol (GPI). El ácido siálico tiene
un potencial para la diversidad biológica así por ejemplo en el cáncer el incremento
de la actividad de la enzima sialil transferasa 6 (ST6Gal1) favorece la formación del
enlace glicosídico en posición α-2,6 en los carbohidratos presentes en glicoconjugados
de la membrana celular como parte del fenotipo maligno. En esta revisión se
abordará el papel del ácido siálico en el cáncer de mama.
REFERENCIAS (EN ESTE ARTÍCULO)
Varki A y Kornfeld S (2017). Essentials of Glycobiology, 3rd edition (Tercera ed.). Cold Spring Harbor (NY), E.U.: Cold Spring Harbor Laboratory Press.
Taniuchi K, Cerny RL, Tanouchi A, Kohno K, Kotani N, Honke K, Saibara T, Hollingsworth MA. (2011). Overexpression of GalNActransferase GalNAc-T3 promotes pancreatic cancer cell growth. Oncogene, 30(49), 4843– 4854. https://doi.org/10.1038/onc.2011.194.
Gallegos Velasco I B, Coutiño R, Martínez G y Hernández P (2008). Marcadores glicosilados en cáncer de mama. Revista de Educación Bioquímica 27:52-59
Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH. Cell surface protein glycosylation in cancer. (2014). Proteomics. 14:525-546.
Zejian Zhang, Wuhrer, M. Holst, S. (2018). Serum sialylation changes in cancer. Glycoconjugate Journal, 35:139–160.
Hakomori S. (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A. 99:10231-10233
Suzuki T, Kitajima K, Inoue S, Inoue Y. (1995) N-glycosylation/deglycosylation as a mechanism for the post-translational modification/remodification of proteins. Glycoconj J. 12:183-193.
B S GK, Surolia A. (2017) Comprehensive analysis of α 2-3-linked sialic acid specific Maackia amurensis leukagglutinin reveals differentially occupied N-glycans and C-terminal processing. Int J Biol Macromol. 94:114-121.
Burchell JM, Beatson R, Graham R, Taylor- Papadimitriou J, Tajadura-Ortega V. (2018). O-linked mucin-type glycosylation in breast cancer. Biochem Soc Trans. 46:779-788.
Bennett E, Mandel U, Clausen H, Gerken T, Fritz T y Tabak, L. (2012). Control of mucintype O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 22:736–756.
Nissi M. Varki, Elizabeth Strobert, Edward J. Dick Jr., Kurt Benirschke, Ajit Varki (2011). Biomedical differences between human and nonhuman hominids: potential roles for uniquely human aspects of sialic acid biology. Annu Rev Pathol. 6:365-393.
López Morales D, Vallejo V. (2007). Expresión de ácido sialico y de la β-galactósido α-2,6- sialiltransferasa en cáncer. Revista de Educación Bioquímica 26(3):93-98.
Dall’Olio F, Chiricolo M (2001) Sialyltransferases in cancer. Glycoconj J 18:841-850.
Dall’Olio F (2000) The sialyl-alpha2,6- lactosaminystructure: biosynthesis and functional role. Glycoconj J 17:669-676.
Zhuang D, Yousefi S, Dennis JW (1991) Tn antigen and UDP-Gal:GalNAc alpha-R beta1- 3Galactosyltransferase expression in human breast carcinoma. Cancer Biochem Biophys. 12:185-98.
Dhawan, P, and Richmond A. (2002) Role of CXCL1 in tumorigenesis of melanoma. J. Leukoc. Biol. 72, 9−18.
Heo SH, Lee JY, Yang K.M, and Park KS. (2015) ELK3 Expression Correlates With Cell Migration, Invasion, and Membrane Type 1-Matrix Metalloproteinase Expression in MDAMB- 231 Breast Cancer Cells. Gene Expression 16, 197−203.
Julien S, Krzewinski-Recchi MA, Harduin- Lepers A, Gouyer V, Huet G, Le Bourhis X, Delannoy P (2001) Expression of sialyl-Tn antigen in breast cancer cells transfected with the human CMP-Neu5Ac: GalNAc alpha2,6-sialyltransferase (ST6GalNac I) cDNA. Glycoconj J. 18:883-893.
Sewell R, Backstrom M, Dalziel M, Gschmeissner S, Karlsson H, Noll T, Gatgens J, Clausen H, Hansson GC, Burchell J, Taylor- Papadimitriou J (2006). The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J Biol Chem. 281: 3586-3594.
Julien S, Delannoy P (2003) Sialyl-Tn antigen in cancer: from diagnosis to therapy. Recent Research Developments in Cancer. Edited by: Pandalai SG, Kerala: Transworld Research Network, 5:185-199
Kinney AY, Sahin A, Vernon SW, Frankowski RF, Annegers JF, Hortobagyi GN, Buzdar AU, Frye DK, Dhingra K (1997). The prognostic significance of sialyl-Tn antigen in women treated with breast carcinoma treated with adjuvant chemotherapy. Cancer. 80:2240- 2249.
Leivonen M, Nordling S, Lundin J, von Boguslawski K, Haglund C (2001) STn and prognosis in breast cancer. Oncology. 61: 299-305.
23 Kitagawa H, Paulson JC (1993) Cloning and expression of human Gal beta 1,3(4) GlcNAc alpha 2,3-sialyltransferase. Biochem Biophys Res Commun. 194:375-382. 10.1006/ bbrc.1993.1830.
Cazet A, Julien S, Bobowski M, Bourchel l J, Delannoy P. (2010). Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res 12, 204
Matsuura N, Narita T, Mitsuoka C, Kimura N, Kannagi R, Imai T, Funahashi H, Takagi H (1997). Increased level of circulating adhesion molecules in the sera of breast cancer patients with distant metastases. Jpn J Clin Oncol. 27: 135-139.
Kelly MP, Lee FT, Smyth FE, Brechbiel MW, Scott AM (2006) Enhanced efficacy of 90Y-radiolabeled anti-Lewis Y humanized monoclonal antibody hu3S193 and paclitaxel combined-modality radioimmunotherapy in a breast cancer model. J Nucl Med. 47:716-725.
Marquina G, Waki H, Fernandez LE, Kon K, Carr A, Valiente O, Perez R, Ando S: (1996). Gangliosides expressed in human breast cancer. Cancer Res. 56:5165-5171.
Ruckhaberle E, Rody A, Engels K, Gaetje R, von Minckwitz G, Schiffmann S, Grosch S, Geisslinger G, Holtrich U, Karn T, Kaufmann M (2008) Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat., 112:41-52.
Ruckhaberle E, Karn T, Rody A, Hanker L, Gatje R, Metzler D, Holtrich U, Kaufmann M (2009). Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3 synthase is associated with prognosis in breast cancer. J Cancer Res Clin Oncol. 135: 1005-1013.
Goss PE, Baker MA, Carver JP, Dennis JW(1995) Inhibitors of carbohydrate processing: a new class of anticancer agents. Clin Cancer Res. 1:935-944.
Tanaka T, Decuzzi P, Cristofanilli M, Sakamoto JH, Tasciotti E, Robertson FM, Ferrari M (2009). Nanotechnology for breast cancer therapy. Biomed Microdevices. 11:49-63.
Lo NW, Dennis JW, Lau JT (1999). Overexpression of the alpha2,6-sialyltransferase, ST6Gal I, in a low metastatic variant of a murine lymphoblastoid cell line is associated with appearance of a unique ST6Gal I mRNA. Biochem Biophys Res Commun. 264:619-621.
Taniguchi A (2008). Promoter structure and transcriptional regulation of human betagalactoside alpha2, 3-sialyltransferase genes. Curr Drug Targets., 9:310-316.
Fuentes D, Avellanet J, Garcia A, Iglesias N, Gabri MR, Alonso DF, Vazquez AM, Perez R, Montero E (2010) Combined therapeutic effect of a monoclonal antiidiotype tumor vaccine against NeuGc-containing gangliosides with chemotherapy in a breast carcinoma model. Breast Cancer Res Treat. 120:379-389.
Miles D, Papazisis K (2003) Rationale for the clinical development of STn-KLH (Theratope) and anti-MUC-1 vaccines in breast cancer. Clin Breast Cancer. 3 (Suppl 4):S134-S138.
Julien S, Picco G, Sewell R, Vercoutter-Edouart AS, Tarp M, Miles D, Clausen H, Taylor- Papadimitriou J, Burchell JM /2009) Sialyl-Tn vaccine induces antibodymediated tumour protection in a relevant murine model. Br J Cancer. 100:1746-1754.