2016, Número 5
<< Anterior Siguiente >>
Salud Mental 2016; 39 (5)
Correlación del funcionamiento ejecutivo y la potencia absoluta del EEG en niños
Galicia-Alvarado M, Flores-Ávalos B, Sánchez-Quezada A, Yáñez-Suárez Ó, Brust-Carmona H
Idioma: Español
Referencias bibliográficas: 55
Paginas: 267-274
Archivo PDF: 211.30 Kb.
RESUMEN
Introducción
La potencia espectral en reposo a menudo se considera como un
marcador robusto de la función cerebral; sin embargo, pocos estudios
la han asociado con una función específica.
Objetivo
Analizar la relación entre la potencia absoluta (PA) del EEG con el
desempeño en las tareas de funcionamiento ejecutivo en niños.
Método
Investigación transversal correlacional en 30 niños (8.6 ± 1 años). Se
realizó el EEG con ojos cerrados y análisis de derivaciones bipolares.
Con la transformada de Fourier se calculó la PA en el espectro de
1.6-30 Hz. Se aplicó la batería NEUROPSI Atención y Memoria y se
calculó el Índice de Atención y Funciones Ejecutivas (IAFE). En función
de éste, se comparó la PA con Kruskal-Wallis y valor Z, coeficiente de
Spearman para la correlación con las subpruebas.
Resultados
Los niños con alteraciones severas (x = 63 ± 8 IC 95% [57.2, 68.5])
tuvieron mayor PA delta en F1F7, P301 y P402, así como valores Z
cercanos a 2
DE en F7T3, F3C3 y F8T4 en frecuencias lentas. Las
correlaciones fueron significativas (rho,
p ≤ .05) entre el IAFE con la
PA delta en P301 (-.57), P402 (-.43) y T5O1 (-.37); con PA alfa principalmente
en zonas fronto-temporo-parieto-occipitales izquierdas. La
puntuación en Detección Visual y Fluidez Semántica se relacionó con
la PA alfa.
Discusión y conclusión
El rendimiento en actividades de FE es diferente en relación con la PA
delta frontal y parietal. Existe una relación inversa entre la PA delta y
alfa en reposo con la atención y fluidez (245/250).
REFERENCIAS (EN ESTE ARTÍCULO)
Goldman-Rakic P. Cellular basis of WM. Neuron 1995;14:477-485.
Goldberg E. The executive brain: Frontal lobes and the civilized mind. Oxford: University Press; 2001.
Miyake A et al. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn Psychol 2000;41:49-100.
Anderson V et al. Development of executive functions through late childhood and adolescence in an Australian sample. Dev Neuropsychol 2001;20:385-406.
Huizinga M et al. Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia 2006;44:2017-2036.
Lores-Lázaro J et al. Desarrollo de funciones ejecutivas, de la niñez a juventud. Anales Psicologia 2014;30:463-473.
Best J, Miller P. A developmental perspective on executive function. Child Dev 2010;81:1641-1660.
Romine C, Reynolds C. A model of the development of frontal lobe functioning: findings from a meta-analysis. Appl Neuropsyschol 2005;12:190-201.
Best J, Miller P, Jones L. Executive functions after age 5: Changes and correlates. Dev Rev 2009;29:180-200.
Michels L et al. Developmental changes of functional and directed resting- state connectivities associated with neuronal oscillations in EEG. Neuroimage 2013;81:231-242.
Lüchinger R et al. Brain state regulation during normal development : Intrinsic activity fluctuations in simultaneous EEG–fMRI. Neuroimage 2012:60:1426-1439.
Fair D et al. Atypical default network connectivity in youth with attention- deficit/hyperactivity disorder. Biol Psychiatry 2010:68:1084–1091.
Fair D et al. The maturing architecture of the brain’s default network. Proc Natl Acad Sci U S A 2008;105:4028-4032.
Buckner R, Vincent J. Unrest at rest: default activity and spontaneous network correlations. NeuroImage 2007;37:1091–1096.
Laufs H et al. Electroencephalographic signatures of attentional and cognitive default. Proc Natl Acad Sci U S A 2003;100:11053-11058.
Raichle M et al. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676–682.
Harmony T et al. EEG delta activity: An indicator of attention to internal processing during performance of mental tasks. Int J Psychophysiol 1996;24:161-171.
Fernández T et al. Relationship of specific EEG frequencies at specific brain areas with performance. Neuroreport 1998;9: 3681-3687.
Knyazev G. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 2012;36:677-695.
Klimesch W. Alpha and beta band power changes in normal and dyslexic children. Clin Neurophysiol 2001;112:1186-1195.
Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 1999;29:169- 195.
Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations : The inhibition – timing hypothesis. Brain Res Rev 2007;53:63-88.
Buzsáki G, Kaila K, Raichle M. Inhibition and brain work. Neuron 2007;56:771–783.
Knyazev G. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev 2007;31:377-395.
Szava S et al. High resolution quantitative EEG analysis. Brain Topogr 1994;6:211-219.
Buzsáki G. Rhythms of the brain. Oxford: Oxford University; 2006.
Matute E, Rosselli M, Ardila A, Ostrosky-Solís F. Evaluación neuropsicológica infantil. México: Manual Moderno; 2007.
Ostrosky-Solís F et al. Neuropsi atención y memoria 6 a 85 años. México: American Book Store; 2003.
Ostrosky-Solís F et al. Neuropsi attention and memory: A neuropsychological test battery in Spanish with norms by age and educational level. Appl Neuropsychol Adult 2007;14:156-170.
Gómez-Pérez E, Ostrosky-Solís F. Attention and memory evaluation across the life span: Heterogeneous effects of age an education. J Clin Exp Neuropsychol 2006;58:477-494.
Harmony T, Fernadez-Bouzas A. Mapeo del EEG en el estudio de los pacientes con lesiones expansivas intracraneales. Archivos Clínica Neurológica Querétaro 1995;4:20-24.
Gonzalez Garrido A et al. Comparison of EEG abnormal activities in learning disabled, behavioral disordered and normal children. Arch Inst Nac Neurol Neurocir Mex 1993;8:67-72.
Massar S, Kenemans J, Schutter D. Resting-state EEG theta activity and risk learning: sensitivity to reward or punishment? Int J Psychophysiol 2014;91:172-177.
Harmony T et al. Correlation between EEG spectral parameters and an educational evaluation. Int J Neurosci 1990;54:147-155.
Harmony T et al. Longitudinal quantitative EEG study of children with different performances on a reading-writing test. Electroencephalogr Clin Neurophysiol 1995;95:426-433.
Matousek M, Rasmussen P, Gilberg C. EEG frequency analysis in children with so called minimal brain dysfunction and related disorders. Adv Biol Psychiatry 1984;15:102-108.
Clarke A et al. EEG analysis in attention-deficit/hyperactivity disorder: A comparative study of two subtypes. Psychiatry Res 1998;81:19-29.
Clarke A et al. Age and sex effects in the EEG: Differences in two subtypes of attention-deficit/hyperactivity disorder. Clin Neurophysiol 2001;112:815-826.
Snyder S, Hall J. A meta-analysis of quantitative EEG power associated with attention deficit hyperactivity disorder J Clin Neurophysiol 2006;23:440-455.
Chabot R, Serfontein G. Quantitative Electroencephalographic Profiles of Children with Attention Deficit Disorder. Biol Psychiatry 1996;15:951-963.
Chabot R et al. Behavioural and electrophysiological predictors of treatment response to stimulants in children with attention disorders. J Child Neurol 1999;14:343-351.
Clarke A et al. Behavioural differences between EEG-defined subgroups of children with attention-deficit/hyperactivity disorder. Clin Neurophysiol 2011;122:1333-1341.
Seeley W et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27:2349-2356.
Hampson M et al. Brain Connectivity related to working memory performance. J Neurosci 2006;26:13338-13343.
Laufst H et al. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci U S A 2003;100:11053-11058.
Sutton S et al. Resting cortical brain activity and social behavior in higher functioning children with autism. J Child Psychol Psychiatry 2005;46:211-222.
Başar E et al. Brain’s alpha, beta, gamma, delta, and theta oscillations in neuropsychiatric diseases: Proposal for biomarker strategies. Suppl Clin Neurophysiol 2013;62:19-54.
Başar E. EEG-brain dynamics: Relation between EEG and brain evoked potentials. Amsterdam: Elsevier; 1980.
Brandt M, Jansen B. The relationship between prestimulus alpha amplitude and visual evoked potential amplitude. Int J Neurosci 1991;61:261-268.
Başar E et al. Spontaneous EEG theta activity controls frontal visual evoked potential amplitudes. Electroencephalogr Clin Neurophysio 1998;108:101-109.
Barry R, Kirkaikul S, Hodder D. EEG alpha activity and the ERP to target stimuli in an auditory oddball paradigm. Int J Psychophysiol 2000;39:39-50.
Barry R et al. Preferred EEG brain states at stimulus onset in a fixed interstimulus interval equiprobable auditory Go/NoGo task: A definitive study. Int J Psychophysiol 2014;94: 42-58.
Fassbender C et al. A lack of default network suppression is linked to increased distractibility in ADHD. Brain Res 2009;1273:114-128.
Proal E et al. Actividad funcional cerebral en estado de reposo: redes en conexión. Rev Neurol 2011;52(Supl 1):S3-10.
Weissman D et al. The neural bases of momentary lapses in attention. Nat Neurosci 2006;9:971-978.