2004, Número 1
<< Anterior Siguiente >>
Rev Mex Cardiol 2004; 15 (1)
Hiperemia reactiva de extremidades superiores e inferiores en diferentes grupos de entrenamiento deportivo
Gutiérrez-Sánchez JB, García-Unzueta MT , Amado-Señarís JA , Poveda-Sierra JJ ,De-Mier I, de Berrazueta-Fernández JR
Idioma: Español
Referencias bibliográficas: 48
Paginas: 23-29
Archivo PDF: 86.97 Kb.
RESUMEN
Introducción: el ejercicio físico induce un incremento en el flujo arterial, la pletismografía por oclusión intermitente con strain gauge de mercurio en
silastic permite estudiar las extremidades superiores e inferiores en hiperemia reactiva.
Objetivos: determinar el flujo arterial en hiperemia reactiva de las extremidades superiores e inferiores en ciclistas, remerosy un grupo control.
Material y métodos: estudiamos 10 ciclistas de alta competición, 10 remeros de alta competición y 10 sujetos de control mediante técnica de hiperemia reactiva midiendo el flujo arterial mediante pletismografía en extremidades superiores e inferiores.
Resultados: no existieron diferencias significativas en los flujos basales. Mayores
incrementos de flujo arterial en piernas de ciclistas y remeros, en los controles. Incrementos mayores de flujo arterial en brazos de remeros omparado con ciclistas y controles.
Conclusiones: la técnica de hiperemia
reactiva medida por pletismografía es de fácil aplicación, mínimamente invasiva y sus datos son reproducibles. Existe un mayor incremento en el flujo arteria en hiperemia reactiva en extremidades superiores e inferiores en los deportistas y es mayor en las extremidades que se ejercitan más por el tipo de deporte.Deben de realizarse más estudios comparativos entre grupos sanos condiferentes riesgos para padecer enfermedades cardiovasculares.
REFERENCIAS (EN ESTE ARTÍCULO)
Morris JN, Kagan A, Pattison DC, Gardner MJ. Incidence and prediction of ischemic heart-disease in London busmen. Lancet 1966; 2: 553-559.
Cassel J, Heyden S, Bartel AG et al. Occupation and physical activity and coronary heart disease. Arch Intern Med 1971; 128: 920-928.
Roserman RH, Brand RJ, Jenkins D, Friedman M, Straus R, Wurm M. Coronary heart disease in the Western Collaborative Group. JAMA 1975; 233: 872-877.
Redwood DR, Rosing DR, Epstein SE. Circulatory and symptomatic effects of physical training in patients with coronary artery disease and angina pectoris. N Engl J Med 1972; 286: 959-965.
Niebauer J, Cooke JP. Cardiovascular effects of exercise: role of endothelial shear stress. J Am Coll Cardiol 1996; 28: 1652-1660.
Poveda JJ, Riestra A, Salas E, Cagigas ML, Amado JA, Berrazueta JR. Contribution of nitric oxide to exercise-induced changes in healthy volunteers: effects of acute and long-term physical training. Eur J Clin Invest 1997; 27: 967-971. C:Documents and Settingsjbgs0128Mis documentosMy Music
Berrazueta JR, Baghat K, Vallance P, MacAllister RJ. Dose and time-dependency of the dilator effects of the Endothelin antagonist, BQ 123, in the human forearm. Br J Clin Pharmacol 1997; 44: 569-571.
Soresen KE, Celermajer DS, Spiegelhalter DJ et al. Non-invasive measurement of human endothelium dependent arterial responses: accuracy and reproducibility. Br Heart J 1995; 74: 274-253.
Clarkson P, Montgomery HE, Mullen MJ et al. Exercise training enhances endothelial function in young men. J Am Coll Cardiol 1999; 33: 1379-1385.
Green DJ, Fowler DT, O’Driscoll JG, Blanksby BA, Taylor RR. Endothelium-derived nitric oxide activity in forearm vessels of tennis players. J Appl Physiol 1996; 81: 943-948.
Kroese AJ. Reactive hyperaemia in the calf of trained and untrained subjects: a study with strain gauge plethysmography. Scand J Clin Lab Invest 1977; 37: 111-115.
Kroese AJ. Reactive hyperaemia in the human calf after long lasting ischaemia. Scand J Clin Lab Invest 1976; 36: 739-745.
Patterson GC, Whelan RF. Reactive hyperaemia in the human forearm. Clin Sci 1955; 14: 197-201.
Whitney RJ. The measurement of volume changes in human limbs. J Physiol (London) 1953; 121: 1-27.
Dziekan G, Myers J, Goebbels U et al. Effects of exercise training on limb blood flow in patients with reduced ventricular function. Am Heart J 1998; 136: 22-30.
Wang J, Wolin MS, Hintze TH. Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res 1993; 73: 829-838.
Miller VM, Vanhoutte PM. Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow. Am J Physiol 1988; 255: H446-451.
Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002-2012.
Sessa WC, Harrison JK, Barber CM et al. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 1992; 267: 15274-15276.
Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med 1990; 323: 27-36.
Tagawa T, Imaizumi T, Endo T, Shiramoto M, Harasawa Y, Takeshita A. Role of nitric oxide in reactive hyperemia in human forearm vessels. Circulation 1994; 90: 2285-2290.
Duff F, Shepherd JT. The circulation in the chronically denervated forearm. Clin Sci 1953; 12: 407-416.
Shepherd JT. Circulation to skeletal muscle. Handbook of physiology. The cardiovascular system. Peripheral circulation and organ blood flow. Bethesda, MD: Am Physiol Soc 1983. Sect. 2, vol. III, pt.1, chapt. 11 pp: 319- 370.
Kilbom A, Wennmalm A. Endogenous prostaglandins as local regulators or blood flow in man: effect of indomethacin on reactive and functional hyperaemia. J Physiol Lond 1976; 257: 109-121.
Engelke KA, Halliwill JR, Proctor DN, Dietz NM, Joyner MJ. Contribution of nitric oxide and prostaglandins to reactive hyperemia in human forearm. J Appl Physiol 1996; 81: 1807-1814.
Ress DD, Palmer RM, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 1989; 86: 3375-3378.
Willians DJ, Vallance PJ, Neild GH, Spencer JA, Imms FJ. Nitric Oxide-mediated Vasodilation in Human Pregnancy. Am J Physiol 1997; 272: H748-752.
Koller A, Huang A, Sun D, Kaley G. Exercise training augments flow-dependent dilation in rat skeletal muscle arterioles. Role of endothelial nitric oxide and prostaglandins. Circ Res 1995; 76: 544-550.
Bove AA, Dewey JD. Proximal coronary vasomotor reactivity after exercise training in dogs. Circulation 1985; 71: 620-625.
Miller VM, Vanhoutte PM. Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow. Am J Physiol 1988; 255: H446-451.
Charlton GA, Crawford MH. Physiological consequences of training. Cardiol Clin 1997; 15: 345-354.
Laight DW, Kaw AV, Carrier MJ, Anggard EE. Interaction between superoxide anion and nitric oxide in the regulation of vascular endothelial function. Br J Pharmacol 1998; 124: 238-244.
Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986; 320: 454-456.
Rajagopalan S, Kurz S, Münzel T et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97: 1916-1923.
McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in hypertension: the role of superoxide anion. Hypertension 1999; 34: 539-545.
Cardillo C, Kilcoyne CM, Cannon RO 3rd, Quyyumi AA, Panza JA. Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension 1997; 30: 57-63.
Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323: 22-27.
Node K, Kitakaze M, Yoshikawa H, Kosaka H, Hori M. Reversible reduction in plasma concentration of nitric oxide induced by cigarette smoking in young adults. Amer J Cardiol 1997; 79: 1538-1541.
Sherman DL. Exercise and endothelial function. Coronary Artery Dis 2000; 11: 117-122.
Kuchan MJ, Frangos JA. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Physiol 1993; 264: H150-156.
Sharefkin JB, Diamond SL, Eskin SG, McIntire LV, Dieffenbach CW. Fluid Flow decreases preproendothelin mRNA levels and suppresses endothelin-1 peptide release in cultured human endothelial cells. J Vasc Surg 1991; 14: 1-9.
Boulanger C, Lüscher TF. Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest 1990; 85: 587-590.
Delp MD. Differential effects of training on the control of skeletal muscle perfusion. Med Sci Sports Exerc 1998; 30: 361-374.
Dornyei G, Monos E, Kaley G, Koller A. Myogenic responses of isolated rat skeletal muscle venules: modulation by norepinephrine and endothelium. Am J Physiol 1996; 271: H267-272.
Higashi Y, Sasaki S, Sasaki N et al. Daily aerobic exercise improves reactive hyperemia in patients with essential hypertension. Hypertension 1999; 33: 591-597.
Sherman DL. Exercise and endothelial function. Coronary Artery Dis 2000; 11: 117-122.
Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986; 250: H1145-H1149.
Niebauer J, Cooke JP. Cardiovascular effects of exercise: role of endothelial shear stress. J Am Coll Cardiol 1996; 28: 1652-1660.