2005, Número 3
<< Anterior Siguiente >>
Rev Endocrinol Nutr 2005; 13 (3)
Posible uso terapéutico de las células troncales embrionarias como fuente de células β pancreáticas
Díaz F, Velasco I, Camacho-Arroyo I
Idioma: Español
Referencias bibliográficas: 59
Paginas: 132-139
Archivo PDF: 104.47 Kb.
RESUMEN
Las células troncales embrionarias (CTE) son células pluripotentes, es decir, mantienen la capacidad para diferenciarse a todos los tejidos que forman un embrión. Las CTE son obtenidas de la masa celular interna de un estadío embrionario muy temprano denominado blastocisto. Las CTE pueden ser mantenidas y expandidas como células indiferenciadas por grandes períodos de tiempo en cultivo, sin sufrir alteraciones genéticas. Estas células pluripotentes se han propuesto como una fuente potencial de células para terapias de reemplazo sustitutivo en el humano, debido a las características antes mencionadas. Las CTE pueden ser utilizadas también como un modelo novedoso para estudiar en detalle los procesos de desarrollo y función en el organismo. Así, las CTE han llamado poderosamente la atención en los campos de la medicina y la biología. En este trabajo de revisión nos enfocamos en describir la diferenciación de CTE de ratón y de humano a células que producen y secretan insulina, y el efecto que tiene su trasplante en modelos animales de diabetes dependiente de insulina (tipo I).
REFERENCIAS (EN ESTE ARTÍCULO)
Solter D, Skreb N, Damjanov I. Extrauterine growth of mouse egg-cylinders results in malignant teratoma. Nature 1970; 227: 503-504.
Stevens LC. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev Biol 1970; 21: 364-382.
Donovan PJ, Gearhart J. The end of the beginning for pluripotent stem cells. Nature 2001; 414: 92-97.
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154-156.
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78: 7634-7638.
Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 1984; 309: 255-256.
Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 2001; 17: 435-462.
Wobus AM, Holzhausen H, Jakel P, Schoneich J. Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp Cell Res 1984; 152: 212-219.
Smith AG, Heath JK, Donaldson DD et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 1988; 336: 688-690.
Williams RL, Hilton DJ, Pease S et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 1988; 336: 684-687.
Aghajanova L. Leukemia inhibitory factor and human embryo implantation. Ann N Y Acad Sci 2004; 1034: 176-183.
Boeuf H, Hauss C, Graeve FD, Baran N, Kedinger C. Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells. J Cell Biol 1997; 138: 1207-1217.
Solter D, Knowles BB. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 1978; 75: 5565-5569.
Burdon T, Chambers I, Stracey C, Niwa H, Smith A. Signaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cells. Cells Tissues Organs 1999; 165: 131-143.
Prelle K, Vassiliev IM, Vassilieva SG, Wolf E, Wobus AM. Establishment of pluripotent cell lines from vertebrate species present status and future prospects. Cells Tissues Organs 1999; 165: 220-236.
Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000; 24: 372-376.
Mitsui K, Tokuzawa Y, Itoh H et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113(5): 631-642.
Amit M, Carpenter MK, Inokuma MS et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227: 271-278.
Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000; 18: 399-404.
Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 2002; 20(9): 933-936.
Laslett AL, Filipczyk AA, Pera MF. Characterization and culture of human embryonic stem cells. Trends Cardiovasc Med 2003; 13: 295-301.
Kawasaki H, Mizuseki K, Nishikawa S et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000; 28: 31-40.
Leahy A, Xiong JW, Kuhnert F, Stuhlmann H. Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. J Exp Zool 1999; 284: 67-81.
Keller GM. In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 1995; 7: 862-869.
Abe K, Niwa H, Iwase K et al. Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies. Exp Cell Res 1996; 229: 27-34.
Ying QL, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003; 21: 183-186.
Itskovitz-Eldor J, Schuldiner M, Karsenti D et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 2000; 6: 88-95.
Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2000; 97: 11307-11312.
Xu RH, Chen X, Li DS et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 2002; 20: 1261-1264.
Gage FH. Cell therapy. Nature 1998; 392: 18-24.
Bach JF. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 1994; 15: 516-542.
Taylor SI, Accili D, Imai Y. Insulin resistance or insulin deficiency. Which is the primary cause of NIDDM? Diabetes 1994; 43: 735-740.
Maedler K, Donath MY. Beta-cells in type 2 diabetes: a loss of function and mass. Horm Res 2004; 62: 67-73.
Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med 1993; 328: 1676-1685.
Seaberg RM, Smukler SR, Kieffer TJ et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 2004; 22: 1115-1124.
Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 2002; 32: 128-134.
Sapir T, Shternhall K, Meivar-Levy I et al. Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci USA 2005; 102: 7964-7969.
Hori Y, Gu X, Xie X, Kim SK. Differentiation of insulin-producing cells from human neural progenitor cells. Plos Med 2005; 2: e103.
Burns CJ, Minger SL, Hall S et al. The in vitro differentiation of rat neural stem cells into an insulin-expressing phenotype. Biochem Biophys Res Commun 2005; 326: 570-577.
Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001; 292: 1389-1394.
Blyszczuk P, Czyz J, Kania G et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 2003; 100: 998-1003.
Miyazaki S, Yamato E, Miyazaki J. Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 2004; 53: 1030-1037.
Murtaugh LC, Melton DA. Genes, signals, and lineages in pancreas development. Annu Rev Cell Dev Biol 2003; 19: 71-89.
Melloul D, Marshak S, Cerasi E. Regulation of insulin gene transcription. Diabetologia 2002; 45: 309-326.
Deltour L, Leduque P, Blume N et al. Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo. Proc Natl Acad Sci USA 1993; 90: 527-531.
Devaskar SU, Singh BS, Carnaghi LR, Rajakumar PA, Giddings SJ. Insulin II gene expression in rat central nervous system. Regul Pept 1993; 48: 55-63.
Paek HJ, Morgan JR, Lysaght MJ. Sequestration and synthesis: the source of insulin in cell clusters differentiated from murine embryonic stem cells. Stem Cells 2005; 23: 862-867.
Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA. Insulin staining of ES cell progeny from insulin uptake. Science 2003; 299: 363.
Sipione S, Eshpeter A, Lyon JG, Korbutt GS, Bleackley RC. Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia 2004; 47: 499-508.
Hansson M, Tonning A, Frandsen U et al. Artifactual insulin release from differentiated embryonic stem cells. Diabetes 2004; 53: 2603-2609.
Kahan BW, Jacobson LM, Hullett DA et al. Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes 2003; 52: 2016-2024.
Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000; 49(2): 157-162.
Leon-Quinto T, Jones J, Skoudy A, Burcin M, Soria B. In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 2004; 47: 1442-1451.
Ku HT, Zhang N, Kubo A et al. Committing embryonic stem cells to early endocrine pancreas in vitro. Stem Cells 2004; 22: 1205-1217.
Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M. Insulin production by human embryonic stem cells. Diabetes 2001; 50: 1691-1697.
Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz-Eldor J. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 2004; 22: 265-274.
Amit M, Margulets V, Segev H et al. Human feeder layers for human embryonic stem cells. Biol Reprod 2003; 68: 2150-2156.
Hovatta O, Mikkola M, Gertow K et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 2003; 18: 1404-1409.
Hwang WS, Roh SI, Lee BC et al. Patient-specific embryonic stem cells derived from human SCNT blastocysts. Science 2005; 308: 1777-1783.