2010, Número 2
<< Anterior Siguiente >>
Arch Neurocien 2010; 15 (2)
Las crisis hipertérmicas modifican el contenido tisular de aminoácidos excitatorios e inhibitorios en regiones del cerebro anterior de ratas inmaduras
González RM, Neri BL, Salgado CH, Orozco SSA
Idioma: Español
Referencias bibliográficas: 65
Paginas: 84-92
Archivo PDF: 169.95 Kb.
RESUMEN
Existe evidencia de los cambios en los aminoácidos inhibitorios y excitatorios que pueden estar involucrados en la susceptibilidad e inducción de las crisis.
Objetivo: examinar a corto plazo las modificaciones en el contenido tisular de aminoácidos excitatorios e inhibitorios en el cerebro anterior de ratas de 10 días de edad, 30 min, 24 h y 20 días después de las crisis hipertérmicas (CH).
Material y métodos: las CH fueron inducidas en ratas de 10 días de edad, al aplicar una corriente moderada de aire caliente, aproximadamente a 50 cm de ellas; los cerebros fueron usados para cuantificar el contenido tisular de aminoácidos inhibitorios y excitatorios mediante HPLC.
Resultados: en relación al contenido tisular de aminoácidos, el grupo CH 30min después de las crisis hipertérmicas mostró un aumento significativo de todos ellos en las diferentes estructuras evaluadas. Mientras que el grupo CH 24hs expuso un aumento significativo de glutamato y glutamina en hipocampo, así como de aspartato y glutamato en la amígdala, además el tallo cerebral presentó un aumentó significativo en muchos de los aminoácidos analizados. En las otras estructuras evaluadas hubo un decremento significativo de los mismos. El grupo CH 20d mostró un aumento en todos los aminoácidos en estriado y cerebelo.
Conclusión: los resultados del presente estudio no apoyan la hipótesis que las CH en estados tempranos inducen cambios a largo plazo semejantes a los observados en modelos de epilepsia del lóbulo temporal en animales adultos.
REFERENCIAS (EN ESTE ARTÍCULO)
Consensus development conference on febrile seizures, National Institutes of Health, May 19-21, 1980. Epilepsia 1981;22(3):377-81.
Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989; 30(4):389-99.
Barr WB, Ashtari M, Schaul N. Bilateral reductions in hippocampal volume in adults with epilepsy and a history of febrile seizures. J Neurol Neurosurg Psychiatry 1997; 63(4):461-7.
VanLandingham KE, Heinz ER, Cavazos JE, Lewis DV. Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann Neurol 1998;43(4):413-26.
Provenzale JM, Barboriak DP, VanLandingham K, MacFall J, Delong D, Lewis DV. Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis. AJR Am J Roentgenol 2008; 190(4):976-83.
Merkenschlager A, Todt H, Pfluger T, Bernhard MK. Development of hippocampal sclerosis after a complex febrile seizure. Eur J Pediatr 2009; 168(4):487-90.
Nelson KB, Ellenberg JH. Predictors of epilepsy in children who have experienced febrile seizures. N Engl J Med 1976; 295(19):1029-33.
Bower SP, Kilpatrick CJ, Vogrin SJ, Morris K, Cook MJ. Degree of hippocampal atrophy is not related to a history of febrile seizures in patients with proved hippocampal sclerosis. J Neurol Neurosurg Psychiatry 2000; 69(6):733-8.
Baram TZ, Gerth A, Schultz L. Febrile seizures: an appropriateaged model suitable for long-term studies. Brain Res Dev Brain Res 1997; 98(2):265-70.
Chen K, Baram TZ, Soltesz I. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 1999; 5(8):888-94.
Dube C, Brunson KL, Eghbal-Ahmadi M, Gonzalez-Vega R, Baram TZ. Endogenous neuropeptide Y prevents recurrence of experimental febrile seizures by increasing seizure threshold. J Mol Neurosci 2005; 25(3):275-84.
González-Ramírez M, Orozco S, Salgado H, Feria A, Rocha L. Hyperthermia-induced seizures modify the GABAA and benzodiazepine receptor binding in immature rat brain. Cell Mol Neurobiol 2005; 25(6):955-71.
Dube C, Chen K, Eghbal-Ahmadi M, Brunson K, Soltesz I, Baram TZ. Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann Neurol 2000;47(3):336-44.
Brewster A, Bender RA, Chen Y, Dube C, Eghbal-Ahmadi M, Baram TZ. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoformand cell-specific manner. J Neurosci 2002; 22(11):4591-9.
Lupica CR, Bell JA, Hoffman AF, Watson PL. Contribution of the hyperpolarization-activated current (I(h)) to membrane potential and GABA release in hippocampal interneurons. J Neurophysiol2001; 86(1):261-8.
Corda MG, Orlandi M, Lecca D, Carboni G, Frau V, Giorgi O. Pentylenetetrazol-induced kindling in rats: effect of GABA function inhibitors. Pharmacol Biochem Behav 1991; 40(2):329-33.
McNamara JO, Rigsbee LC, Butler LS, Shin C. Intravenous phenytoin is an effective anticonvulsant in the kindling model. Ann Neurol 1989; 26(5):675-8.
Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ. Two genes encode distinct glutamate decarboxylases. Neuron 1991; 7(1):91-100.
Soghomonian JJ, Martin DL. Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 1998; 19(12):500-5.
Pasantes-Morales H. Volume regulation in brain cells: cellular and molecular mechanisms. Metab Brain Dis 1996;11(3):187-204.
Saransaari P, Oja SS. Taurine and neural cell damage. Amino Acids 2000; 19(3-4):509-26.
Shin HK, Linkswiler HM. Tryptophan and methionine metabolism of adult females as affected by vitamin B-6 deficiency. J Nutr 1974; 104(10):1348-55.
Gundersen RY, Vaagenes P, Breivik T, Fonnum F, Opstad PK. Glycine-an important neurotransmitter and cytoprotective agent. Acta Anaesthesiol Scand 2005; 49(8):1108-16.
Bowery NG, Smart TG. GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol 2006; 147 Suppl 1:S109-S119.
Gusev EI, Skvortsova VI, Dambinova SA, Raevskiy KS, Alekseev AA, Bashkatova VG, et al. Neuroprotective effects of glycine for therapy of acute ischaemic stroke. Cerebrovasc Dis 2000;10(1):49-60.
Pow DV, Crook DK. Direct immunocytochemical evidence for the transfer of glutamine from glial cells to neurons: use of specific antibodies directed against the d-stereoisomers of glutamate and glutamine. Neuroscience 1996; 70(1):295-302.
Collingridge GL, Lester RA. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 1989; 41(2):143-210.
Eskandari S, Kreman M, Kavanaugh MP, Wright EM, Zampighi GA. Pentameric assembly of a neuronal glutamate transporter. Proc Natl Acad Sci U S A 2000; 97(15):8641-6.
Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 1994; 14(9):5559-69.
Chaudhry FA, Reimer RJ, Edwards RH. The glutamine commute: take the N line and transfer to the A. J Cell Biol 2002;157(3):349-55.
Rae C, Hare N, Bubb WA, McEwan SR, Broer A, McQuillan JA, et al. Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J Neurochem 2003; 85(2):503-14.
Fleck MW, Henze DA, Barrionuevo G, Palmer AM. Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus. J Neurosci 1993; 13(9):3944-55.
Lowry OH RNFARRJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1):265-75.
Kendrick KM, Keverne EB, Chapman C, Baldwin BA. Microdialysis measurement of oxytocin, aspartate, gamma-aminobutyric acid and glutamate release from the olfactory bulb of the sheep during vaginocervical stimulation. Brain Res 1988; 442(1):171-4.
Bear J, Lothman EW. An in vitro study of focal epileptogenesis in combined hippocampal-parahippocampal slices. Epilepsy Res 1993; 14(3):183-93.
Veliskova J, Velisek L, Nunes ML, Moshe SL. Developmental regulation of regional functionality of substantial nigra GABAA receptors involved in seizures. Eur J Pharmacol 1996; 309(2):167-73.
Depaulis A, Vergnes M, Marescaux C. Endogenous control of epilepsy: the nigral inhibitory system. Prog Neurobiol 1994; 42(1):33-52.
Rocha L, Ackermann RF, Chugani HT, Engel J, Jr. Chronic pretreatment with naloxone modifies benzodiazepine receptor binding in amygdaloid kindled rats. Epilepsy Res 1994; 17(2):135-43.
Rocha L, Ackermann RF, Engel J, Jr. Chronic and single administration of pentylenetetrazol modifies benzodiazepine receptor-binding: an autoradiographic study. Epilepsy Res 1996; 24(2):65-72.
Staley KJ, Soldo BL, Proctor WR. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 1995; 269 (5226):977-81.
Fujiwara-Tsukamoto Y, Isomura Y, Nambu A, Takada M. Excitatory GABA input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells. Neuroscience 2003; 119(1):265-75.
Liebregts MT, McLachlan RS, Leung LS. Hyperthermia induces age-dependent changes in rat hippocampal excitability. Ann Neurol 2002; 52(3):318-26.
Moshe SL. Seizures early in life. Neurology 2000; 55(5 Suppl 1):S15-S20.
Dzhala VI, Staley KJ. Excitatory actions of endogenously released GABA contribute to initiation of ictal epileptiform activity in the developing hippocampus. J Neurosci 2003; 23(5):1840-6.
Chen K, Aradi I, Thon N, Eghbal-Ahmadi M, Baram TZ, Soltesz I. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat Med 2001; 7(3):331-7.
Kornelsen RA, Boon F, Leung LS, Cain DP. The effects of a single neonatally induced convulsion on spatial navigation, locomotor activity and convulsion susceptibility in the adult rat. Brain Res 1996; 706(1):155-9.
Ding R, Asada H, Obata K. Changes in extracellular glutamate and GABA levels in the hippocampal CA3 and CA1 areas and the induction of glutamic acid decarboxylase-67 in dentate granule cells of rats treated with kainic acid. Brain Res 1998;800(1):105-13.
Ueda Y, Tsuru N. Simultaneous monitoring of the seizure-related changes in extracellular glutamate and gamma-aminobutyric acid concentration in bilateral hippocampi following development of amygdaloid kindling. Epilepsy Res 1995; 20(3):213-9.
Caldecott-Hazard S, Engel J Jr. Limbic postictal events: anatomical substrates and opioid receptor involvement. Prog Neuropsychopharmacol Biol Psychiatry 1987; 11(4):389-418.
Chagnac-Amitai Y, Connors BW. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 1989; 61(4):747-58.
Chervin RD, Pierce PA, Connors BW. Periodicity and directionality in the propagation of epileptiform discharges across neocortex.J Neurophysiol 1988; 60(5):1695-713.
Yonekawa WD, Kupferberg HJ, Woodbury DM. Relationship between pentylenetetrazol-induced seizures and brain pentylenetetrazollevels in mice. J Pharmacol Exp Ther 1980;214(3):589-93.
McNamara JO, Bonhaus DW, Shin C. Role of the substantia nigra in the kindling model of limbic epilepsy. Adv Exp Med Biol 1986;203:139-46.
Cooper IS, Amin I, Riklan M, Waltz JM, Poon TP. Chronic cerebellar stimulation in epilepsy. Clinical and anatomical studies. Arch Neurol 1976; 33(8):559-70.
Fisher RS, MMKGL. Brain stimulation. In: Engel J PA, editor. Epilepsy: a comprehensive textbook. Philadelphia. Lippincott-Raven 1997.
Bender RA, Dube C, Gonzalez-Vega R, Mina EW, Baram TZ. Mossy fiber plasticity and enhanced hippocampal excitability, withouthippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus 2003;13(3):399-412.
Alonso-Nanclares L, Garbelli R, Sola RG, Pastor J, Tassi L, Spreafico R, et al. Microanatomy of the dysplastic neocortexfrom epileptic patients. Brain 2005; 128(Pt 1):158-73.
Arias C, Valero H, Tapia R. Inhibition of brain glutamate decarboxylase activity is related to febrile seizures in rat pups. J Neurochem 1992; 58(1):369-73.
Yang XF, Chang JH, Rothman SM. Intracerebral temperature alterations associated with focal seizures. Epilepsy Res 2002;52(2):97-105.
Orozco-Suárez S, Brunson KL, Feria-Velasco A, Ribak CE. Increased expression of gamma-aminobutyric acid transporter-1 in the forebrain of infant rats with corticotropin-releasing hormone-induced seizures but not in those with hyperthermiainduced seizures. Epilepsy Res 2000; 42(2-3):141-57.
Orozco-Suárez S, F-VA. Febrile seizures induce neuronal death in the developing brain. Epilepsia 2001;42(57)222.