2021, Number 38
<< Back Next >>
Inv Ed Med 2021; 10 (38)
The telepresence with robots increases the desirable actions and learning objectives in simulated emergency clinical cases
Gutiérrez AE, Vázquez AGF, Rogel JR, Pereda SEO, Aguilar D, Lucena NMR, Pérez CAI
Language: Spanish
References: 20
Page: 59-67
PDF size: 488.66 Kb.
ABSTRACT
Introduction: the acquisition of desirable actions and
learning objectives in simulated emergency clinical cases
might be increased with the support of robotic telepresence
(RTP).
Objective: determine if there are changes in desirable
actions and learning objectives before and after the experienced
support through RTP in simulated emergency
clinical cases.
Method: comparative study about a competence educational
model. The study included 18 senior students of
medicine. RTP included a software: Double [app version
2.0.5 (230)], Double robot, Ipad air first generation. The
expertise support through RTP was done by an emergency
medicine specialist. To qualify, a check list about
desirable actions and learning objectives was used in
each clinical case before and after RTP. At the end, a
survey among students of satisfactory use of RTP was
done. Descriptive statistics were performed and a Mann
Whitney test was performed to determine differences before
and after RTP.
Results: nine pairs of cases with and without RTP were
analyzed. There were statistical differences in desirable
actions before 50.57 (46.10-57.74) and after RTP 81.53
(70.62-85.70) There were statistical differences in learning
objectives before 32.50 (25.89-47.44) and after RTP 75
(63.07-75.67). There was 92% of agreement about the use
of RTP as to solve emergency simulated clinical cases.
Conclusions: the use of RTP increases desirable actions
and learning objectives with a high rate of agreement in
solving simulated emergency clinical cases among senior
medical students.
REFERENCES
Kohn LT, Corrigan JM, Donaldson MS, editors. To err is human: building a safer health system. 1st.ed. Washington (DC): National Academies Press (US); 2000.
Serna-Ojeda JC, Borunda-Nava D, Domínguez-Cherit G. La simulación en Medicina. La situación en México. Cir Cir. 2012;80:301-05.
Cáceres Méndez EA, Castro Díaz SM, Gómez Restrepo C, Puyana JC. Telemedicina: historia, aplicaciones y nuevas herramientas en el aprendizaje. Universitas Médica [Internet]. 2011;52(1):11-35.
Smith CD, Skandalakis JE. Remote presence proctoring by using a wireless remote control videoconferencing system. Surg Innov. 2005;12(28):T1-T5.
Campos A. Entrenamiento con simuladores quirúrgicos. La caverna de Platón, los ídolos de Bacon, la McDonaldización de la Medicina y la poca (auto) crítica. Cir. gen. 2016; 30(1):41-8.
Lemus Bernal CA, Estupiñán Cuesta EP, Guillén Pinto EP. Evaluación del rendimiento de redes ópticas para aplicaciones de telemedicina en ambientes simulados. Tecnura [online]. 2013;17(36):21-40.
Vázquez de Anda GF, Lazarra Rico S, González Carbajal NP, González Ó, Salinas Arnaut Á, Camacho Beiza RI. Medicina especializada presencial remota mediante el uso de robots en áreas críticas. Rev Asoc Mex Med Crit y Ter Int. 2010(4):178-84.
Monteagudo JL, Serrano L, Hernández Salvador C. La telemedicina: ¿ciencia o ficción? An. Sistema Sanitario de Navarra. Septiembre-diciembre. 2005;28(3):309-23.
González Armengol JJ, Carrincondo F, Mingorance C, Gil- Loyzaga P. Telemedicina aplicada a la atención sanitaria urgente: aspectos metodológicos y prácticos. Emergencias. 2009(4);21:287-94.
Litewka S. Telemedicina: un desafío para América Latina. Acta Bioeth. 2005;11(2):127-32.
Van Oeveren L, Donner J, Fantregossi A, M Mohr N, BrownIII CA. Telemedicine-assisted intubation in rural emergency departments: a national emergency airway registry study. Telemed J E Health. Apr 2017:290-97. http://doi.org/10.1089/ tmj.2016.0140
Monteagudo Peña Jose Luis, Hernández Salvador Carlos, García-López Fernando. Metodología de introducción de servicios e-salud para el seguimiento y control de pacientes crónicos. Rev. Esp. Salud Pública [Internet]. 2004 Oct [citado 2020 Oct 23];78(5):571-81. Disponible en: http:// scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1135- 57272004000500002&lng=es
Gordon J. Medical Education Technologies (CD-ROM), Sarasota, FL. 2007.
Young MP, Birkmeyer JD. Potential reduction in mortality rates using an intensivist model to manage intensive care units. Eff Clin Pract. 2000;3(6):284-9. PMID 11151525.
Vespa, PM, Miller C, Hu X, Nenov V, Buxey F, Martin NA. Intensive care unit robotic telepresence facilitates rapid physician response to unstable patients and decreased cost in neurontensive care.SurgNeurol; 67(4):331-7.
Schrant, BL, Archer LL, Long R. Human patient simulation as a teaching tool. 2018;115(1):71-4.
Yang T, Buck S, Evans L, Auerbach M. A Telesimulation Elective to Provide Medical Students With Pediatric Patient Care Experiences During the COVID Pandemic. Pediatr Emerg Care. 2021 Feb 1;37(2):119-22. doi: 10.1097/ PEC.0000000000002311. PMID: 33181792.
Su D, Michaud TL, Estabrooks P, Schwab RJ, Eiland LA, Hansen G et al. Diabetes management through remote pa- tient monitoring: the importance of patient activation and engagement with the technology. Telemed J E Health. 2019; 25(10):952-9.
Lamb D. The introduction of new critical care equipment into the aeromedical evacuation service of the Royal Air Force. Intensive Crit Care Nurs. 2003;19(2):92-102.
Ellison LM, Nguyen M, Fabrizio MD, Soh A, Permpongkosol S, Kavoussi LR. Postoperative robotic telerounding: a multicenter randomized assesment of patient outcomes and satisfaction. Arch Surg. 2007(12):1177-81.