2021, Number 1
<< Back Next >>
Med Crit 2021; 35 (1)
PEEP: two sides of the same coin
Pérez NOR, Zamarrón LEI, Guerrero GMA, Deloya TE, Soriano OR, Sánchez DJS, Martínez CM?, Morgado VLA, Pozos CKP
Language: Spanish
References: 80
Page: 34-46
PDF size: 495.17 Kb.
ABSTRACT
For eons, the study on the management of positive end-expiratory pressure (PEEP) has been exponential and fundamental for the study of pulmonary pathologies, mainly due to its direct relationship with acute respiratory distress syndrome (ARDS) presenting changes and advances in pulmonary protection goals including low tidal volume (Vt), plateau pressure (Pp) below 30 cmH
2O, maximum airway pressure (Paw) less than 35 mmH
2O, distention pressure (ΔP) less than 13 mmH
2O and application of PEEP greater than 5 cmH
2O, reducing the mortality of this entity. The PEEP application involves a challenge to the clinician, its objective is to take the patient to the optimal point of this, achieving the opening of most alveoli and decreasing the ventilator-induced pulmonary injury (VILI), in turn affecting the others organs and systems.
REFERENCES
Barach AL, Martin J, Eckman M. Positive pressure respiration and its application to the treatment of acute pulmonary edema. Ann Intern Med. 1938;12:754-795.
Cournand A, Motley HL, Werko L. Mechanism underlying cardiac output change during intermittent positive pressure breathing (IPP). Fed Proc. 1947;6:92.
Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults. Lancet. 1967;2:319-323.
Suter PM, Fairley B, Isenberg MD. Optimum end expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292:284-289.
Tenaillon A, Labrousse J, Gateau O, et al. Optimal positive end-expiratory pressure and static lung compliance. N Engl J Med. 1978;299:774-775.
Dantzker DR, Lynch JP, Weg JG. Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest. 1980;77:636-642.
Rapin M, Lemaire F, Regnier B, et al. Increase of intrapulmonary shunting induced by dopamine. Proc R Soc Med. 1977;70 Suppl 2:71-75.
Lemaire F, Harf A, Simonneau G, et al. Gas exchange, static pressure-volume curve and positive-pressure ventilation at the end of expiration. Study of 16 cases of acute respiratory insufficiency in adults. Ann Anesthesiol Fr. 1981;22:435-441.
Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28:596-608.
Lachmann B. Open up the lung and keep the lung open. Intensive Care Med. 1992;18:319-321.
Bouferrache K, Vieillard-Baron A. Acute respiratory distress syndrome, mechanical ventilation, and right ventricular function. Curr Opin Crit Care. 2011;17:30-35.
Manual básico de ventilación mecánica AVENTHO. Ed. Prado; Cap. 11; 163-165.
Kacmarek RM, Villar J, Sulemanji D, Montiel R, Ferrando C, Blanco J, et al. Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial. Crit Care Med. 2016;44(1):32-42.
Sánchez Casado M, Quintana Díaz M, Palacios D, Hortigüela V, Marco Schulke C, García J, et al. Relationship between the alveolar-arterial oxygen gradient and PaO2/FiO2, introducing peep into the model. Med Intensiva. 2012;36(5):329-334.
Biasi A, Aranha E, Nasi L, De Moraes D, Petri L, Penna H, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome a randomized clinical trial. JAMA. 2017; 318 (14): 1335-1345. doi: 10.1001/jama.2017.14171.
Pérez Nieto OR, Zamarrón López EI, Soriano Orozco R, Guerrero Gutiérrez MA, Morgado Villaseñor LA, Sánchez Díaz JS, et al. Síndrome de distrés respiratorio agudo: abordaje basado en evidencia. Intensive Qare. 2019. doi: 10.13140/RG.2.2.26627.96800.
Vieillard-Baron A, Matthay M, Teboul JL, et al. Experts' opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med. 2016;42:739-749.
Jardin F, Vieillard-Baron A. Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med. 2003;29(9):1426-1434.
Luecke T, Pelosi P. Clinical review: positive end-expiratory pressure and cardiac output. Crit Care. 2005;9(6):607-621.
van der Zee P, Gommers D. Recruitment maneuvers and higher PEEP, the so-called open lung concept, in patients with ARDS. Crit Care. 2019;23(1):73.
Amini R, Herrmann J, Kaczka DW. Intratidal overdistention and derecruitment in the injured lung: a simulation study. IEEE Trans Biomed Eng. 2017;64(3):681-689.
Zhao Z, Chang MY, Chang MY, Gow CH, Zhang JH, Hsu YL, et al. Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve in severe acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):7.
Sribar A, Merc V, Persec Z, Persec J, Milas I, Husedzinovic S. Influence of different PEEP levels on electrical impedance tomography findings in patients under general anesthesia ventilated in the lateral decubitus position. J Clin Monit Comput. 2020;34(2):311-318.
Bugedo G, Retamal J, Bruhn A. Driving pressure: a marker of severity, a safety limit, or a goal for mechanical ventilation? Crit Care. 2017;21(1):199. doi: 10.1186/s13054-017-1779-x.
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747-755.
Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, PROSEVA study group. Prone positioning in severe acute respiratory distress syndrome. NEJM. 2013;368(23):2159-2168.
Piraino T, Cook D. Optimal PEEP guided by esophageal balloon manometry. Respiratory Care. 2011;56(4):510-513.
Calvancanti A, Amato M, Serpa-Neto A. The elusive search for "best PEEP" and whether esophageal pressure monitoring helps. JAMA. 2019;321(9):839-841.
Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520-531.
Formenti P, Graf J, Santos A, Gard KE, Faltesek K, Adams AB, et al. Non-pulmonary factors strongly influence the stress index. Intensive Care Med. 2011;37(4):594-600.
Graf J, Formenti P, Santos A, Gard K, Adams A, Tashjian J, et al. Pleural effusion complicates monitoring of respiratory mechanics. Crit Care Med. 2011;39(10):2294-2299.
Rama-Maceiras P. Atelectasias perioperatorias y maniobras de reclutamiento alveolar. Arch Bronconeumol. 2010;46(6):317-324.
Hsu CW, Sun SF. Iatrogenic pneumothorax related to mechanical ventilation. World J Crit Care Med. 2014;3(1):8-14.
Lindqvist J, van den Berg M, van der Pijl R, Hooijman PE, Beishuizen A, Elshof J. Positive end-expiratory pressure ventilation induces longitudinal atrophy in diaphragm fibers. Am J Respir Crit Care Med. 2018;198(4):472-485.
Kirkpatrick AW, Roberts DJ, De Waele J, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39:1190-1206.
Reintam Blaser A, Regli A, De Keulenaer B, et al. Incidence, risk factors, and outcomes of intra-abdominal hypertension in critically ill patients-a prospective multicenter study (IROI study). Crit Care Med. 2019;47:535-542.
Regli A, Mahendran R, Fysh ET, Roberts B, Noffsinger B, De Keulenaer BL, et al. Matching positive end-expiratory pressure to intra-abdominal pressure improves oxygenation in a porcine sick lung model of intra-abdominal hypertension. Crit Care. 2012;16(5):R208.
Soler Morejón Cde D, Tamargo Barbeito TO. Effect of mechanical ventilation on intra-abdominal pressure in critically ill patients without other risk factors for abdominal hypertension: an observational multicenter epidemiological study. Ann Intensive Care. 2012;2 Suppl 1(Suppl 1):S22.
Jacob LP, Chazalet JJ, Payen DM, Villiers SM, Boudaoud S, Teillac P et al. Renal hemodynamic and functional effect of PEEP ventilation in human renal transplantations. Am J Respir Crit Care Med. 1995;152(1):103-107.
Torquato JA, Lucato JJ, Antunes T, Barbas CV. Interaction between intra-abdominal pressure and positive-end expiratory pressure. Clinics (Sao Paulo). 2009;64(2):105-112.
Regli A, Pelosi P, Malbrain MLNG. Ventilation in patients with intra-abdominal hypertension: what every critical care physician needs to know. Ann Intensive Care. 2019;9(1):52.
Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253-1263.
Malbrain M, Pelosi P. Open up and keep the lymphatics open: they are the hydraulics of the body! Crit Care Med. 2006;34(11):2860-2862.
Moriondo A, Mukenge S, Negrini D. Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation. Am J Physiol Heart Circ Physiol. 2005;289(1):H263-H269.
Pelosi P, Rocco PRM, Gama de Abreu M. Close down the lungs and keep them resting to minimize ventilator-induced lung injury. Crit Care. 2018;22(1):72.
Güldner A, Kiss T, Serpa Neto A, Hemmes SN, Canet J, Spieth PM, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology. 2015;123(3):692-713.
Rodríguez Boto G, Rivero Garvia M, Gutiérrez González R, Márquez Rivas J. Conceptos básicos sobre la fisiopatología cerebral y la monitorización de la presión intracraneal. Neurología. 2015;30(1):16-22.
Koutsoukou A, Perraki H, Raftopoulou A, et al. Respiratory mechanics in braindamaged patients. Intensive Care Med. 2006;32(12):1947-1954.
Caricato A, Conti G, Della Corte F, Mancino A, Santilli F, Sandroni C, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58(3):571-576.
Ball L, Serpa Neto A, Pelosi P. Obesity and survival in critically ill patients with acute respiratory distress syndrome: a paradox within the paradox. Crit Care. 2017;21(1):114.
Muench E, Bauhuf C, Roth H, et al. Effects of positive end-expiratory pressure on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation. Crit Care Med. 2005;33(10):2367-2372.
Borsellino B, Schultz MJ, Gama de Abreu M, Robba C, Bilotta F. Mechanical ventilation in neurocritical care patients: a systematic literature review. Expert Rev Respir Med. 2016;10(10):1123-1132.
Manual básico de Ventilación mecánica AVENTHO. Ed. Prado; Cap. 1; 1-8.
Pelosi P, Hedenstierna G, Ball L, Edmark L, Bignami E. The real role of the PEEP in operating room: pros & cons. Minerva Anestesiol. 2018;84(2):229-235.
Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428-437.
PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, Hemmes SN, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet. 2014;384(9942):495-503.
The LAS VEGAS investigators. Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: LAS VEGAS: an observational study in 29 countries. Eur J Anaesthesiol. 2017;34:492-507.
Writing Committee for the PROBESE Collaborative Group of the PROtective VEntilation Network (PROVEnet) for the Clinical Trial Network of the European Society of Anaesthesiology, Bluth T, Serpa Neto A, Schultz MJ, Pelosi P, Gama de Abreu M et al. Effect of intraoperative high positive end-expiratory pressure (PEEP) with recruitment maneuvers vs low PEEP on postoperative pulmonary complications in obese patients: a randomized clinical trial. JAMA. 2019;321(23):2292-2305. doi: 10.1001/jama.2019.7505. Erratum in: JAMA. 2019;322(18):1829-1830.
Hedenstierna G, McCarthy GS. Airway closure and closing pressure during mechanical ventilation. Acta Anaesthesiol Scand. 1980;24:299-304.
Hales CM, Fryar CD, Carroll MD, et al. Differences in obesity prevalence by demographic characteristics and urbanization level among adults in the United States, 2013–2016. JAMA. 2018;319:2419-2429.
Pepin JL, Timsit JF, Tamisier R, et al. Prevention and care of respiratory failure in obese patients. Lancet Respir Med. 2016;4:407-418.
De Jong A, Molinari N, Pouzeratte Y, et al. Difficult intubation in obese patients: incidence, risk factors, and complications in the operating theatre and in intensive care units. Br J Anaesth. 2015;114:297-306.
De Jong A, Chanques G, Jaber S. Mechanical ventilation in obese ICU patients: from intubation to extubation. Crit Care. 2017;21:63.
Ball L, Pelosi P. How I ventilate an obese patient. Crit Care. 2019;23:176.
Neto AS, Hemmes SN, Barbas CS, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a metaanalysis of individual patient data. Lancet Respir Med. 2016;4(4):272-280.
Chestnut D, Wong C, Tsen L, Ngan Kee WD, Jill Mhyre YB, et al. Chestnut's obstetric anesthesia: principles and practice. Chapter 2; Physiologic changes of pregnancy. 6th edition. Elsevier; 2019. pp. 15-38.
Munnur U, Bandi VD, Gropper MA. Airway management and mechanical ventilation in pregnancy. In: Rosene-Montella K, Bourjeily G (eds). Pulmonary problems in pregnancy. Respiratory medicine. Humana Press; 2009. pp. 385-403.
Munnur U, Karnad DR, Bandi VD, et al. Critically ill obstetric patients in an American and an Indian public hospital: comparison of case-mix, organ dysfunction, intensive care requirements, and outcomes. Intensive Care Med. 2005;31(8):1087-1094.
Casey E, Hayes N, Ross A, Connolly L, Dob D, Zimmerman J. Obstetric critical care, clinical problems. ESICM. 2013.
Muthu V, Agarwal R, Dhooria S, Prasad KT, Aggarwal AN, Suri V, et al. Epidemiology, lung mechanics and outcomes of ARDS: a comparison between pregnant and non-pregnant subjects. J Crit Care. 2019;50:207-212.
Lapinsky SE, Rojas-Suarez JA, Crozier TM, Vasquez DN, Barrett N, Austin K, et al. Mechanical ventilation in critically-ill pregnant women: a case series. Int J Obstet Anesth. 2015;24(4):323-328.
Barbosa FT, Castro AA, de Sousa-Rodrigues CF. Positive end-expiratory pressure (PEEP) during anaesthesia for prevention of mortality and postoperative pulmonary complications. Cochrane Database Syst Rev. 2014;(6):CD007922.
Oliveira ACO, Lorena DM, Gomes LC, Amaral BLR, Volpe MS. Effects of manual chest compression on expiratory flow bias during the positive end-expiratory pressure-zero end-expiratory pressure maneuver in patients on mechanical ventilation. J Bras Pneumol. 2019;45(3):e20180058.
Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117:1717-1731.
Moitra VK, Einav S, Thies KC, Nunnally ME, Gabrielli A, Maccioli GA, et al. Cardiac arrest in the operating room: resuscitation and management for the anesthesiologist: Part 1. Anesth Analg. 2018;126(3):876-888.
Meyer G, Vieillard-Baron A, Planquette B. Recent advances in the management of pulmonary embolism: focus on the critically ill patients. Ann Intensive Care. 2016;6(1):19.
Garrido Galindo C, Flores Hernández SS, Pérez Redondo CN. Diferencias anatomofuncionales y endoscópicas entre la vía aérea del niño y la del adulto. Rev Inst Nal Enf Resp Mex. 2007;2:142-148.
Kneyber MCJ, de Luca D, Calderini E, Jarreau PH, Javouhey E, Lopez-Herce J, et al. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med. 2017;43(12):1764-1780.
Rimensberger PC, Cheifetz IM; Pediatric Acute Lung Injury Consensus Conference Group. Ventilatory support in children with pediatric acute respiratory distress syndrome: proceedings from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S51-S60.
Khemani RG, Smith L, Lopez-Fernandez YM, Kwok J, Morzov R, Klein MJ, et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7(2):115-128.