2021, Number 1
<< Back Next >>
Rev Biomed 2021; 32 (1)
Medical ozone on GABA, glutamate, and brain aldehyde dehydrogenase 2 in abstinent alcoholic rats
Díaz-Soto MT, Fraga-Pérez Á, Dranguet-Vaillant J, Bécquer MÁ, Casanova M, Calderín-Miranda JM, León-Fernández OS
Language: Spanish
References: 49
Page: 12-22
PDF size: 577.16 Kb.
ABSTRACT
Introduction. Alcoholism is a chronic disease produced by the uncontrolled
consumption of alcoholic beverages. Alcohol Abstinence Syndrome (AAS)
is the clinical expression of the abrupt interruption or decrease of alcohol
intake in a patient who has developed physical dependence. During AAS,
neuronal imbalance occurs between the neurotransmitters GABA and
glutamate that trigger an increase in Reactive Oxygen Species associated
with important behavioral disorders. On the other hand, the metabolism
of ethanol itself generates the formation of Acetaldehyde, a highly toxic
metabolite capable of generating oxidative stress by different mechanisms,
under these conditions the activity of the cerebral mitochondrial Aldehyde
Dehydrogenase (ALDH) enzyme is inhibited, which leads to the accumulation
of Acetaldehyde and other toxic aldehydes such as Malonyldialdehyde and
3,4 dihydroxyphenylacetaldehyde.
Objective. To determine the actions of medical ozone on GABA, Glutamate
and cerebral aldehyde dehydrogenase 2 in alcoholic rats during abstinence.
Materials and methods. In the model of alcoholism developed in Lewis rats,
medical ozone (1mg / kg rectally, 10 sessions, every 24 hours) was applied
during the abstinence stage.
Results. The activity of the ALDH enzyme was preserved and restored the
redox balance at the cerebral level. These results corresponded to a decrease
in behavioral disorders related to neuronal imbalance.
Conclusions. Pharmacological manipulation of the Gabaergic and
glutamatergic receptors showed that even under conditions of neuronal
imbalance reinforced by agonists and / or antagonists of these receptors,
medical ozone decreased pro-oxidant / antioxidant imbalance and related
behavioral disorders (anxiety).
REFERENCES
National Institute on Drug Abuse. Las drogas, el cerebro y el comportamiento. La ciencia de la adicción. Departamento de Salud y Servicios Humanos. Estados Unidos. NIH Publicación No. 15-5605(S). 2014
Rebolledo-García D, Granados-Moreno DL, González- Vargas PO. Perspectivas del síndrome de supresión etílica: tratamiento a la mexicana. Med Int Méx. 2018 julio-agosto;34(4):582-593. doi: 10.24245/mim. v34i4.2086
Freynhagen R, Backonja M. Pregabalin for the treatment of drug and alcohol withdrawal symptoms: A comprehensive review. CNS Drugs. 2016; 30:1191- 1200. doi: 10.1007/s40263-016-0390-z.
Díaz-Soto MT, Calderín-Miranda JM. Síndrome de abstinencia alcohólica: Resultado del estrés oxidativo y desequilibrio neuronal. Estado del arte. Rev Biomed. 2020; 31(2):96-107. doi:10.32776/revbiomed.v31i2.779
Definición de Alcoholismo OMS. Monografía de página web. Disponible en: http://informe-alcohol.blogspot. com/2009/04/definicion-de-alcoholismo-oms.html. [Fecha de acceso 10 de nov 2019].
Becker HC. Effects of Alcohol Dependence and Withdrawal on Stress Responsiveness and Alcohol Consumption. Alcohol Res. 2012; 34(4):448–458. https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC3860383/
Schmidt KJ, Doshi MR, Holzhausen JM, Natavio A, Cadiz M, Winegardner JE. Treatment of severe alcohol withdrawal. Ann Pharmacother. 2016; 50(5):389-401. doi: 10.1177/1060028016629161.
Weintraub SJ. Diazepam in the treatment of moderate to severe alcohol withdrawal. CNS Drugs. 2017 Feb 31(2): 87-95. doi: 10.1007/s40263-016-0403-y.
Brotherton AL, Hamilton EP, Kloss HG, Hammond DA. Propofol for treatment of refractory alcohol withdrawal syndrome: a review of the literature. Pharmacotherapy. 2016 Apr; 36(4):433-442. doi: 10.1002/phar.1726.
Wong A, Benedict NJ, Armahizer MJ, Kane-Gill SL. Evaluation of adjunctive ketamine to benzodiazepines for management of alcohol withdrawal syndrome. Ann Pharmacother. 2015 Jan; 49(1): 14-19. doi: 10.1177/1060028014555859.
Liu J, Wang LN. Baclofen for alcohol withdrawal. Cochrane Database Syst. Rev. 2017 Aug; 20(8);8:CD008502. doi: 10.1002/14651858.CD008502. pub5.
Sen S, Grgurich P, Tulolo A, Smith-Freedman A, Lei Y, Gray A, et al. A symptom-triggered benzodiazepine protocol utilizing SAS and CIWA-Ar scoring for the treatment of alcohol withdrawal syndrome in the critically III. Ann Pharmacother. 2017 Feb; 51(2): 101- 10. doi:10.1177/1060028016672036.
Barbier E, Tapocik JD, Juergens N, Pitcairn C, Borich A, Schank JR, et al. DNA methylation in the medial prefrontal cortex regulates alcohol-induced behavior and plasticity. J Neurosci. 2015 Apr; 35(15):6153-64. doi: 10.1523/JNEUROSCI.4571-14.2015
Jesse S, Bråthen G, Ferrara M, Keindi M, Ben-Menachem E, Tenasescu R, et al. Alcohol withdrawal syndrome: mechanisms, manifestations, and management. Acta Neurol Scand. 2017 Jan; 135 (1): 4-16. doi: 10.1111/ ane.12671.
Beg M, Fisher S, Siu D, Rajan S, Troxell L, Liu VX. Treatment of alcohol withdrawal syndrome with and without dexmedetomidine. Perm J. 2016 Spring; 20(2):49-53. doi: 10.7812/TPP/15-113.
Lucyk SN, Wadowski B, Qian E, Lugassy D, Hoffman RS. Comment: evaluation of adjunctive ketamine to benzodiazepines for management of alcohol withdrawal syndrome. Ann Pharmacother. 2015 Mar; 49(3): 370. doi: 10.1177/1060028014567919.
León OS, Menéndez S, Merino N, Castillo R, Sam S, Perez L, et al. Ozone oxidative preconditioning: a protection against cellular damage by free radicals. Mediators Inflamm. 1998; 7(4): 289–94. doi: 10.1010/0962935989093
Biblioteca Mundial de Ozonoterapia de ISCO3. Disponible en: https://www.zotero.org/groups/46074/ isco3_ozone/library [Fecha de acceso 12 de septiembre de 2020]
Guardia J. La reducción del consumo de alcohol. Un nuevo objetivo en el tratamiento del alcoholismo de baja gravedad. Adicciones. 2015; 27(1): 3-7. https://www. redalyc.org/articulo.oa?id=289139629001 [en línea] [Fecha de acceso 12 de abril de 2020].
Mallok A, Vaillant JD, Soto MT, Viebahn-Hänsler R, Viart Mde L, Pérez AF, et al. Ozone protective effects against PTZ-induced generalized seizures are mediated by reestablishment of cellular redox balance and A1 adenosine receptors. Neurol Res. 2015 Mar; 37(3):204- 10. doi: 10.1179/1743132814Y.0000000445.
Ajamieh HH, Menéndez S, Merino N, Martínez-Sánchez G, Re L, León OS. Ischemic and Ozone Oxidative Preconditionings in the Protection Against Hepatic Ischemic-Reperfusion Injury. Ozone Sci Eng. 2003; 25(3):241–250. doi:10.1080/01919510390481568
Ajamieh H, Merino N, Candelario-Jalil E, Menéndez S, Martinez-Sanchez G, Re L, et al. Similar Protective Effect of Ischaemic and Ozone Oxidative Preconditioning in Liver Ischaemia/Reperfusion Injury. Pharmacol Res. 2002 Apr; 45(4):333–9. doi: 10.1006/phrs.2002.0952
Al-Dalain SM, Martínez G, Candelario-Jalil E, Menéndez S, Re L, Giuliani A, León OS. Ozone treatment reduces markers of oxidative and endothelial damage in an experimental diabetes model in rats. Pharmacol Res. 2001 Nov;44(5):391-6. doi: 10.1006/phrs.2001.0867
Candelario-Jalil E, Al-Dalain SM, León-Fernández OS, Menéndez S, Pérez-Oavison G, Merino N, et al. Oxidative Preconditioning Affords Protection Against Carbon Tetrachloride-Induced Glycogen Depletion and Oxidative Stress in Rats. J. Appl. Toxicol. 2001 Jul, 2(4)1: 297–301. doi:10.1002/jat.758
León-Fernández OS, Ajamieh HH, Berlanga J, Menéndez S, Viebahn-Hánsler R, Re L, et al. Ozone Oxidative Preconditioning is Mediated by A1 Adenosine Receptors in a Rat Model of Liver Ischemia/Reperfusion. Transplant Inter. 2008 Jan, 21(1): 29–48. doi:10.1111/ j.1432-2277.2007.00568.x
Martínez G, Al-Dalain SM, Menéndez S, Guiliani A, León OS. Ozone Treatment Reduces Blood Oxidative Stress and Pancreas Damage in a Streptotozotocin- Induced Diabetes Model in Rats. Acta Farm. Bonaerense. 2005 Jun, 24(4):491–7. http://www.latamjpharm.org/ resumenes/24/4/LAJOP_24_4_1_1.pdf
Kamenetzky GV, Mustaca AE. Modelos Animales para el Estudio del Alcoholismo. Ter. Psicol. 2005; 23(1): 65-72. https://www.redalyc.org/articulo.oa?id=785/78523107 [en línea] [fecha de acceso 12 de abril de 2020].
Rasmussen D, Milton D, Green S, Puchalski S. Chronic daily ethanol and withdrawal: 2. Behavioral changes during prolonged abstinence. Alcohol Clin Exp Res. 2001 Jul; 25(7):999-1005. doi:10.1111/j.1530-0277.2001. tb02308.x
Mustaca A, Kamenetzky G. Alcoholismo y ansiedad: modelos animales. Int J Psychol Psychol Ther. 2006, 6(3):343-64. https://www.ijpsy.com/volumen6/ num3/148/alcoholismo-y-ansiedad-modelos-animales- ES.pdf
Smolen A, Marks MJ, Smolen TN, Collins AC. Dose and Route of Administration Alter the Relative Elimination of Ethanol by Long-Sleep and Short-Sleep Mice. Alcohol Clin. Exp. Res. 1986 Mar-Apr;10(2):198-204. doi: 10.1111/j.1530-0277.1986.tb05071.x.
Pellow S, File SE. Anxiolytic and anxiongenic drug on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol. Biochem. Behav. 1986 Mar; 24(3): 525-9. doi: 10.1016/0091-3057(86)90552-6.
Soellner D, Grandys T, Nuñez J. Chronic Prenatal Caffeine Exposure Impairs Novel Object Recognition and Radial Arm Maze Behaviors in Adult Rats. Behav Brain Res. 2009 Dec 14; 205(1): 191–199. doi: 10.1016/j. bbr.2009.08.012
Boehringer Mannheim. Biochemica Information.A revised biochemical reference source. Enzymes for routine (1st edition), Germany: Boehringer Mannheim, 1987: 15-16.
Sun Y, Oberley L, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988 Mar; 34(3): 497-500. doi:10.1093/clinchem/34.3.497
Ecobichon DJ. Glutathione despletion and resynthesis in laboratory animals. Drug Chem Toxicol. 1984; 7 (4): 345-55. doi:10.3109/01480548408998263
Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation product: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990; 186: 407–421. doi:10.1016/0076-6879(90)86134-h
Masaki H, Atsumi T, Sakurai H. Detection of Hydrogen Peroxide and Hydroxyl Radicals in Murine Skin Fibroblasts under UVB Irradiation. Biochem. Biophys. Res. Commun. 1995 Jan; 206(2): 474-9. doi:10.1006/ bbrc.1995.1067
Granger DL, Taintor RR, Boockvar KS, Hibbs JB. Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Meth. Enzymol. 1996; 268:142-51. doi: 10.1016/s0076- 6879(96)68016-1.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem. 1976 May; 72:248-54. doi: 10.1006/abio.1976.9999.
Sedlak J, Lindsay RH. Estimation of total, proteinbound, and non-sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968 Oct 24;25(1):192-205. doi: 10.1016/0003-2697(68)90092-4.
Mirandola SR, Melo DR, Saito A, Castilho RF. 3-nitropropionic acid-induced mitochondrial permeability transition: comparative study of mitochondria from different tissues and brain regions. J. Neurosci. Res. 2010 Feb; 88(3): 630-9. doi:10.1002/ jnr.22239
Nicholls DG, Johnson-Cadwell L, Vesce S, Jekabsons M, Yadava N. Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity. J. Neurosci. Res. 2007 Nov; 85(15): 3206-12. doi: 10.1002/ jnr.21290.
Buckett WR. Intravenous bicuculline test in mice: characterisation with GABAergic drugs. J Pharmacol Meth. 1981 Jan; 5(1):35–41. doi:10.1016/0160- 5402(81)90100-5
Läck AK, Christian DT. Chronic ethanol and withdrawal effects on kainate receptor-mediated excitatory neurotransmission in the rat basolateral amygdala. Alcohol. 2009 Feb; 43(1): 25–33.doi: 10.1016/j. alcohol.2008.11.002
Buck KJ, Milner LC, Denmark DL, Grant SG, Kozell LB. Discovering genes involved in alcohol dependence and other alcohol responses: role of animal models. Alcohol Res. 2012; 34(3):367-374. PMID: 23134054; PMCID: PMC3860408.
Davis M. The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. J Psychiatry Neurosci. 2003 Jul;28(4):263-74. PMID: 12921221; PMCID: PMC165791.
Schwartz A, Nikolaevna-Kontorschikova C, Viktorovich- Malesnnikov O, Martínez-Sánchez G, Re L, Avenerovna- Gribkova I, et al. Guía para el uso médico del ozono - Fundamentos terapéuticos e indicaciones. AEPROMO; 2011, 315p. ISBN: 978-84-615-2244-6. https://aepromo. org/guia-para-el-uso-medico-del-ozono-version-online/
Bocci, Velio. OZONE A New Medical Drug; 2005.Edit. Springer
Hauser SR, Hedlund PB, Roberts AJ, Sari Y, Bell RL, Engleman EA. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse. Front Neurosci. 2015 Jan; 8:448 doi:10.3389/fnins.2014.00448