2020, Number 1
Milpas as a model for studying microbiodiversity and plant-microbe interactions
Language: Spanish
References: 86
Page: 1-13
PDF size: 433.82 Kb.
ABSTRACT
Research on agricultural microbiology aims at replacing agrochemicals with microorganisms or their natural products as biological control agents, since the use of technologies from the green revolution have had negative effects on the environment, on farmers and their families, the consumer, and on crop health. However, our current understanding about the beneficial microbe-plant interactions that mediate plant health in complex, natural settings is insufficient to achieve the success of these biological products. Milpas are traditional agroecosystems where several maize landraces are produced, together with other associated species. Technologies from the green revolution such as agrochemicals are largely absent in milpas, and therefore they represent a source of traditional knowledge on sustainable practices for agriculture. Recent studies show that modernization, as well as plant domestication cause disturbances in microbial communities from agroecosystems. Furthermore, unique beneficial bacteria-plant interactions occur in milpas, which may have been lost in modern agroecosystems. In this review, we discuss classic and modern research strategies from agricultural microbiology that can be applied in the study of milpas. Adopting milpas as a model habitat for microbe-plant interactions could result in the generation of knowledge that leads to decrease the use of agrochemicals in modern agroecosystems, as well as avoiding their growing use in milpas.REFERENCES
Aguirre-Von-Wobeser, E., Rocha-Estrada, J., Shapiro, L. R. & De La Torre, M. (2018). Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem. PLoS ONE, 13(12), e0208852. https:// doi.org/10.1371/journal.pone.0208852
Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A. Y., Gattinger, A., Keller, T., Charles, R. & Heijden van der, M. G. A. (2019). Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME Journal, 13(7), 1722–1736. https://doi. org/10.1038/s41396-019-0383-2
Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, E. V. L., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R. & Schmelzer, E. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 91–95. https://doi.org/ https://doi.org/10.1038/nature11336
Castrillo, G., Teixeira, P. J. P. L., Paredes, S. H., Law, T. F., de Lorenzo, L., Feltcher, M. E., Finkel, O. M., Breakfield, N. W., Mieczkowski, P. & Jones, C. D. (2017). Root microbiota drive direct integration of phosphate stress and immunity. Nature, 543(7646), 513–518. https://doi. org/https://doi.org/10.1038/nature21417
Clayton, G. W., Rice, W. A., Lupwayi, N. Z., Johnston, A. M., Lafond, G. P., Grant, C. A. & Walley, F. (2004). Inoculant formulation and fertilizer nitrogen effects on field pea: Crop yield and seed quality. Canadian Journal of Plant Science, 84(1), 89–96. https://doi.org/https://doi. org/10.4141/P02-090
Depoorter, E., Bull, M. J., Peeters, C., Coenye, T., Vandamme, P. & Mahenthiralingam, E. (2016). Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Applied Microbiology and Biotechnology, 100(12), 5215–5229. https://doi.org/https:// doi.org/10.1007/s00253-016-7520-x
Jerónimo, A. S. (2009). Análisis de la agricultura de temporal en México y su relación con las cuestiones climáticas: el caso maíz y frijol. Universidad Autónoma Agraria Antonio Narro. Recuperado de http://repositorio.uaaan. mx:8080/xmlui/bitstream/handle/123456789/5234/ T17603 SANTIAGO JERONIMO%2C ABEL TESIS. pdf?sequence=1yisAllowed=y
Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V. & Del Rio, T. G. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488(7409), 86–90. https://doi.org/https://doi.org/10.1038/ nature11237 Lupatini, M., Korthals, G. W., de Hollander, M., Janssens, T. K. S. & Kuramae, E. E. (2017). Soil microbiome is more heterogeneous in organic than in conventional farming system. Frontiers in Microbiology, 7, 2064. https://doi. org/https://doi.org/10.3389/fmicb.2016.02064
Mus, F., Crook, M. B., Garcia, K., Costas, A. G., Geddes, B. A., Kouri, E. D., Paramasivan, P., Ryu, M., Oldroyd, G. E. D. & Poole, P. S. (2016). Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology, 82(13), 3698–3710. https:// doi.org/https://doi.org/10.1128/AEM.01055-16
Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., Buckler, E. S. & Ley, R. E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, 110(16), 6548–6553. https://doi.org/https://doi. org/10.1073/pnas.1302837110
Pérez-Jaramillo, J. E., Carrión, V. J., Bosse, M., Ferrão, L. F. V, de Hollander, M., Garcia, A. A. F., Ramírez, C. A., Mendes, R. & Raaijmakers, J. M. (2017). Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. The ISME Journal, 11(10), 2244–2257. https://doi.org/ https://doi.org/10.1038/ismej.2017.85
Pershina, E. V, Ivanova, E. A., Korvigo, I. O., Chirak, E. L., Sergaliev, N. H., Abakumov, E. V, Provorov, N. A. & Andronov, E. E. (2018). Investigation of the core microbiome in main soil types from the East European plain. Science of the Total Environment, Vols. 631–632, 1421–1430. https:// doi.org/https://doi.org/10.1016/j.scitotenv.2018.03.136
Pishchany, G., Mevers, E., Ndousse-Fetter, S., Horvath, D. J., Paludo, C. R., Silva-Junior, E. A., Koren, S., Skaar, E. P., Clardy, J. & Kolter, R. (2018). Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen. Proceedings of the National Academy of Sciences, 115(40), 10124–10129. https://doi.org/https:// doi.org/10.1073/pnas.1807613115
Rebollar, E. A., Sandoval-Castellanos, E., Roessler, K., Gaut, B. S., Alcaraz, L. D., Benítez, M. & Escalante, A. E. (2017). Seasonal changes in a maize-based polyculture of central Mexico reshape the co-occurrence networks of soil bacterial communities. Frontiers in Microbiology, 8, 2478. https:// doi.org/10.3389/fmicb.2017.02478
Santhanam, R., Weinhold, A., Goldberg, J., Oh, Y. & Baldwin, I. T. (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences, 112(36), E5013–E5020. https://doi.org/https:// doi.org/10.1073/pnas.1505765112
Shapiro, L. R., Paulson, J. N., Arnold, B. J., Scully, E. D., Zhaxybayeva, O., Pierce, N. E., Rocha, J., Klepac-Ceraj, V., Holton, K. & Kolter, R. (2018). An introduced crop plant is driving diversification of the virulent bacterial pathogen Erwinia tracheiphila. MBio, 9(5), e01307-18. https://doi. org/10.1128/mBio.01307-18
Szoboszlay, M., Lambers, J., Chappell, J., Kupper, J. V, Moe, L. A. & McNear Jr, D. H. (2015). Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biology and Biochemistry, 80, 34–44. https://doi.org/https://doi. org/10.1016/j.soilbio.2014.09.001
Tkacz, A., Pini, F., Turner, T. R., Bestion, E., Simmonds, J., Howell, P., Greenland, A.C., Jitender E., David M. & Uauy, C. (2020). Agricultural selection of wheat has been shaped by plant-microbe interactions. Frontiers in Microbiology, 11, 132. https://doi.org/https://doi. org/10.3389/fmicb.2020.00132
Van Deynze, A., Zamora, P., Delaux, P. M., Heitmann, C., Jayaraman, D., Rajasekar, S., Graham, D., Maeda, J., Gibson, D., Schwartz, K. D., Berry, A. M., Bhatnagar, S., Jospin, G., Darling, A., Jeannotte, R., Lopez, J., Weimer, B. C., Eisen, J. A., Shapiro, H. Y., Ané, J. M. & Bennett, A. B. (2018). Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 16(8), e2006352. https://doi.org/10.1371/journal. pbio.2006352