2020, Número 1
La milpa como modelo para el estudio de la microbiodiversidad e interacciones planta-bacteria
Idioma: Español
Referencias bibliográficas: 86
Paginas: 1-13
Archivo PDF: 433.82 Kb.
RESUMEN
La microbiología agrícola busca reemplazar a los agroquímicos por microorganismos o sus productos como agentes de control biológico, debido a que el uso de tecnologías de la revolución verde tiene efectos negativos sobre el ambiente, los productores y sus familias, los consumidores y la salud de los cultivos. Sin embargo, el conocimiento actual acerca de las interacciones benéficas planta-bacteria en ambientes complejos es limitado e insuficiente, para lograr el éxito esperado de los productos biológicos. Las milpas son agroecosistemas tradicionales donde se cultivan diversas variedades de maíz nativo con otras especies asociadas; no se utiliza riego, ni labranza y aunque su aplicación va en aumento, comúnmente no se utilizan agroquímicos; por esto, la milpa representa una fuente de conocimiento sobre prácticas sustentables. Recientemente, se han descrito cambios en las comunidades microbianas de los sistemas agrícolas a causa de la modernización y a la domesticación de las plantas. En la milpa, también se han identificado interacciones benéficas planta-bacteria que parecen haberse perdido en los cultivos modernos. En esta revisión, discutimos las estrategias clásicas y modernas de la microbiología agrícola que pueden ser aplicadas en el estudio de la milpa. El establecimiento de la milpa como modelo de estudio de las interacciones planta-bacteria puede resultar en la generación del conocimiento necesario para disminuir el uso de agroquímicos en los sistemas agrícolas modernos, así como evitar su creciente uso en las milpas. Palabras clave: agroecosistema milpa, microbiología agrícola, comunidades bacterianas.REFERENCIAS (EN ESTE ARTÍCULO)
Aguirre-Von-Wobeser, E., Rocha-Estrada, J., Shapiro, L. R. & De La Torre, M. (2018). Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem. PLoS ONE, 13(12), e0208852. https:// doi.org/10.1371/journal.pone.0208852
Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A. Y., Gattinger, A., Keller, T., Charles, R. & Heijden van der, M. G. A. (2019). Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME Journal, 13(7), 1722–1736. https://doi. org/10.1038/s41396-019-0383-2
Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, E. V. L., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R. & Schmelzer, E. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 91–95. https://doi.org/ https://doi.org/10.1038/nature11336
Castrillo, G., Teixeira, P. J. P. L., Paredes, S. H., Law, T. F., de Lorenzo, L., Feltcher, M. E., Finkel, O. M., Breakfield, N. W., Mieczkowski, P. & Jones, C. D. (2017). Root microbiota drive direct integration of phosphate stress and immunity. Nature, 543(7646), 513–518. https://doi. org/https://doi.org/10.1038/nature21417
Clayton, G. W., Rice, W. A., Lupwayi, N. Z., Johnston, A. M., Lafond, G. P., Grant, C. A. & Walley, F. (2004). Inoculant formulation and fertilizer nitrogen effects on field pea: Crop yield and seed quality. Canadian Journal of Plant Science, 84(1), 89–96. https://doi.org/https://doi. org/10.4141/P02-090
Depoorter, E., Bull, M. J., Peeters, C., Coenye, T., Vandamme, P. & Mahenthiralingam, E. (2016). Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Applied Microbiology and Biotechnology, 100(12), 5215–5229. https://doi.org/https:// doi.org/10.1007/s00253-016-7520-x
Jerónimo, A. S. (2009). Análisis de la agricultura de temporal en México y su relación con las cuestiones climáticas: el caso maíz y frijol. Universidad Autónoma Agraria Antonio Narro. Recuperado de http://repositorio.uaaan. mx:8080/xmlui/bitstream/handle/123456789/5234/ T17603 SANTIAGO JERONIMO%2C ABEL TESIS. pdf?sequence=1yisAllowed=y
Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V. & Del Rio, T. G. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488(7409), 86–90. https://doi.org/https://doi.org/10.1038/ nature11237 Lupatini, M., Korthals, G. W., de Hollander, M., Janssens, T. K. S. & Kuramae, E. E. (2017). Soil microbiome is more heterogeneous in organic than in conventional farming system. Frontiers in Microbiology, 7, 2064. https://doi. org/https://doi.org/10.3389/fmicb.2016.02064
Mus, F., Crook, M. B., Garcia, K., Costas, A. G., Geddes, B. A., Kouri, E. D., Paramasivan, P., Ryu, M., Oldroyd, G. E. D. & Poole, P. S. (2016). Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology, 82(13), 3698–3710. https:// doi.org/https://doi.org/10.1128/AEM.01055-16
Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., Buckler, E. S. & Ley, R. E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, 110(16), 6548–6553. https://doi.org/https://doi. org/10.1073/pnas.1302837110
Pérez-Jaramillo, J. E., Carrión, V. J., Bosse, M., Ferrão, L. F. V, de Hollander, M., Garcia, A. A. F., Ramírez, C. A., Mendes, R. & Raaijmakers, J. M. (2017). Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. The ISME Journal, 11(10), 2244–2257. https://doi.org/ https://doi.org/10.1038/ismej.2017.85
Pershina, E. V, Ivanova, E. A., Korvigo, I. O., Chirak, E. L., Sergaliev, N. H., Abakumov, E. V, Provorov, N. A. & Andronov, E. E. (2018). Investigation of the core microbiome in main soil types from the East European plain. Science of the Total Environment, Vols. 631–632, 1421–1430. https:// doi.org/https://doi.org/10.1016/j.scitotenv.2018.03.136
Pishchany, G., Mevers, E., Ndousse-Fetter, S., Horvath, D. J., Paludo, C. R., Silva-Junior, E. A., Koren, S., Skaar, E. P., Clardy, J. & Kolter, R. (2018). Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen. Proceedings of the National Academy of Sciences, 115(40), 10124–10129. https://doi.org/https:// doi.org/10.1073/pnas.1807613115
Rebollar, E. A., Sandoval-Castellanos, E., Roessler, K., Gaut, B. S., Alcaraz, L. D., Benítez, M. & Escalante, A. E. (2017). Seasonal changes in a maize-based polyculture of central Mexico reshape the co-occurrence networks of soil bacterial communities. Frontiers in Microbiology, 8, 2478. https:// doi.org/10.3389/fmicb.2017.02478
Santhanam, R., Weinhold, A., Goldberg, J., Oh, Y. & Baldwin, I. T. (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences, 112(36), E5013–E5020. https://doi.org/https:// doi.org/10.1073/pnas.1505765112
Shapiro, L. R., Paulson, J. N., Arnold, B. J., Scully, E. D., Zhaxybayeva, O., Pierce, N. E., Rocha, J., Klepac-Ceraj, V., Holton, K. & Kolter, R. (2018). An introduced crop plant is driving diversification of the virulent bacterial pathogen Erwinia tracheiphila. MBio, 9(5), e01307-18. https://doi. org/10.1128/mBio.01307-18
Szoboszlay, M., Lambers, J., Chappell, J., Kupper, J. V, Moe, L. A. & McNear Jr, D. H. (2015). Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biology and Biochemistry, 80, 34–44. https://doi.org/https://doi. org/10.1016/j.soilbio.2014.09.001
Tkacz, A., Pini, F., Turner, T. R., Bestion, E., Simmonds, J., Howell, P., Greenland, A.C., Jitender E., David M. & Uauy, C. (2020). Agricultural selection of wheat has been shaped by plant-microbe interactions. Frontiers in Microbiology, 11, 132. https://doi.org/https://doi. org/10.3389/fmicb.2020.00132
Van Deynze, A., Zamora, P., Delaux, P. M., Heitmann, C., Jayaraman, D., Rajasekar, S., Graham, D., Maeda, J., Gibson, D., Schwartz, K. D., Berry, A. M., Bhatnagar, S., Jospin, G., Darling, A., Jeannotte, R., Lopez, J., Weimer, B. C., Eisen, J. A., Shapiro, H. Y., Ané, J. M. & Bennett, A. B. (2018). Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 16(8), e2006352. https://doi.org/10.1371/journal. pbio.2006352