2020, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2020; 23 (1)
Impacto de las tecnologías de extracción verdes para la obtención de compuestos bioactivos de los residuos de frutos cítricos
Wong-Paz JE, Aguilar-Zárate P, Veana F, Muñiz-Márquez DB
Idioma: Español
Referencias bibliográficas: 52
Paginas: 1-11
Archivo PDF: 622.07 Kb.
RESUMEN
En la actualidad, las técnicas de extracción convencionales como la maceración, soxhlet y el calentamiento-reflujo
entre otras, han seguido utilizándose debido a su principal ventaja como procesos de extracción más económicos. Sin
embargo, estas metodologías presentan diversas desventajas, como largos tiempos de extracción y requerimiento de
altas cantidades de disolventes. Es por lo hasta aquí expuesto que se han implementado metodologías de extracción
alternativas que cumplen con los principios de la química verde, como son las extracciones asistidas: por ultrasonido (EAU),
microondas (EAM) y con fluidos supercríticos (EAFS). Estos métodos de extracción, alternos a los convencionales, han
logrado despertar el interés de los investigadores como futuras perspectivas de aplicación, con altos rendimientos, para
la recuperación de compuestos bioactivos de los residuos de frutos cítricos, en menor tiempo de extracción, empleando
disolventes verdes. El objetivo de la presente revisión es dar a conocer el impacto de las metodologías de extracción
alternativas con un enfoque en el aprovechamiento y revalorización de los residuos de frutos cítricos, debido a que éstos
presentan una gran diversidad de compuestos de interés para la industria farmacéutica, alimentaria y biotecnológica.
REFERENCIAS (EN ESTE ARTÍCULO)
Al-juhaimi, F. Y. (2014). Citrus fruits by-products as sources of bioactive compounds with antioxidant potential. Pakistan Journal of Botany, 46 (4), 1459-1462.
Al-Mamoori, F. & Al-Janabi, R. (2018). Recent advances in microwave-assisted extraction (MAE) of medicinal plants: a review. International Research Journal of Pharmacy, 9(6), 22-29. DOI: 10.7897/2230-8407.09684
Ali, J., Das, B. & Saikia, T. (2017). Antimicrobial activity of lemon peel (Citrus limon) extract. International Journal of Current Pharmaceutical Research, 9(4), 79-82. DOI: 10.22159/ijcpr.2017v9i4.20962
Alias, N. H. & Abbas, Z. (2017). Microwave-assisted extraction of phenolic compound from pineapple skins: the optimum operating condition and comparision with soxhlet extraction. Malaysian Journal of Analytical Sciences, 21(3), 690-699. DOI: 10.17576/mjas-2017-2103-18
Ameer, K., Shahbaz, H. M. & Kwon, J. (2017). Green extraction methods for polyphenols from plant matrices and their by products: a Review. Comprehensive Reviews in Food Science and Food Safety, 16, 295-315. https://doi. org/10.1111/1541-4337.12253
Bandar, H., Hijazi, A., Rammal, H., Hachem, A., Saad, Z. & Badran, B. (2013). Techniques for the Extraction of Bioactive Compounds from Lebanese Urtica dioica. American Journal of Phytomedicine and Clinical Therapeutics, 1(6), 507-513.
Bermejo, A., Llosá, M. J. & Cano, A. (2011). Analysis of bioactive compounds in seven Citrus cultivars. Food Science and Technology International, 17(1), 55. DOI: 10.1177/1082013210368556.
Boudhrioua, M. N., M´hiri, N., Ioannou, I., Paris, C. & Ghoul, M. (2016). Comparison of the efficiency of different extraction methods on antioxidants of maltease orange peel. International Journal of Food and Nutritional Science, 3(2), 1-13. DOI: 10.15436/2377-0619.16.789
Bull, O. S. & Obunwo, C. C. (2014). Bio-diesel production from oil of orange (Citrus sinensis) peels as feedstock. Journal of Applied Sciences and Environmental Management, 18(3), 371-374. DOI: 10.4314/jasem.v18i3.2
Caputo, L., Quintieri, L., Cavalluzzi, M., Lentini, G. & Habtemariam, S. (2018). Antimicrobial and antibiofilm activities of citrus water-extracts obtained by microwaveassisted and conventional methods. Biomedicines, 6(2), 70. DOI: 10.3390/biomedicines6020070.
Carciochi, R. A., D´Alessandro, L. G., Vauchel, P., Rodriguez, M. M., Nolasco, S. M. & Dimitrov, K. (2017). Valorization of agrifood by-products by extraction valuable bioactive compounds using green processes. In A. M. Grumezescu & A. M. Holban (Eds.), Ingredients extraction by physicochemical methods in food (pp. 191–228). London, United Kindgdom: Academic Press. https://doi.org/10.1016/ B978-0-12-811521-3.00004-1
Chavan, P., Singh, A. K. & Kaur, G. (2018). Recent progress in the utilization of industrial waste and by-products of citrus fruits : A review. Journal of Food Process Engineering, 41, e12895. https://doi.org/10.1111/jfpe.12895. ¿no tiene número de páginas?
Dahmoune, F., Moussi, K., Remini, H., Belbahi, A., Aoun, O., Spigno, G. & Madani, K. (2014). Optimization of ultrasound-assisted extraction of phenolic compounds from Citrus sinensis L. peels using response surface methodology. Chemical Engineering Transactions, 37, 889-894. DOI: 10.3303/CET1437149.
Damián-Reyna, A. A., González-Hernández, J. C. & Chávez- Parga, M. del C. (2016). Procedimientos actuales para la extracción y purificación de flavonoides cítricos. Revista Colombiana de Biotecnología, 18(1), 135-147. DOI: https:// doi.org/10.15446/rev.colomb.biote.v18n1.57724.
Dar, N. G., Hussain, A., Paracha, G. M. & Akhter, S. (2015). Evaluation of different techniques for extraction of antioxidants as bioactive compounds from Citrus peels (industrial by products). American-Eurasian Journal of Agricultural and Environmental Sciences, 15(4), 676-682.
De-la-Rosa-Hernández, M., Wong-Paz, J. E., Muñiz-Márquez, D. B., Carrillo-Inungaray, M. L. & Sánchez-González, J. M. (2016). Compuestos fenólicos bioactivos de la toronja (Citrus paradisi) y su importancia en la industria farmacéutica y alimentaria. Revista Mexicana de Ciencias Farmacéuticas, 47(2), 22-35.
Ergüt, M. & Döker, O. (2017). Recovery of bioactive phenolic compounds from lemon (Citrus limon (L.) Burm .f.) and orange (Citrus sinensis L . Osbeck) Pomaces. Chemical and Process Engineering Research, 51, 18-33.
Ferrentino, G., Morozova, K., Mosibo, O. K., Ramezani, M. & Scampicchio, M. (2018). Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. Journal of Cleaner Production, 186, 253-261. https://doi. org/10.1016/j.jclepro.2018.03.165
Hernández, M., Ventura, J., Castro, C., Boone, V., Rojas, R., Ascacio-Valdés, J. & Martínez-Ávila, G. (2018). UPLCESI- QTOF-MS2 -Based identification and antioxidant activity assessment of phenolic compounds from red corn cob (Zea mays L.). Molecules, 23(1425), 1-10.
Hernawan, I., Radithia, D., Hadi, P. & Ernawati, D. S. (2015). Fungal inhibitory effect of Citrus limon peel essential oil on Candida albicans. Dental Journal (Majalah Kedokteran Gigi), 48(2), 84-88. http://dx.doi.org/10.20473/j.djmkg. v48.i2.p84-88
Khan, M. K., Abert-vian, M., Fabiano-Tixier, A. S., Dangles, O. & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119(2), 851-858. https:// doi.org/10.1016/j.foodchem.2009.08.046
Kim, J. H. & Kim, M. Y. (2016). The potential use of Citrus juice waste as sources of natural phenolic antioxidants. Journal of Applied Pharmaceutical Science, 6(12), 202-205. DOI: 10.7324/JAPS.2016.601230
Kodagoda, K. & Marapana, R. (2017). Utilization of fruit processing by-products for industrial applications: a review. International journal of Food Science and Nutrition, 2(6), 24-30. https://doi.org/10.22271/food
Londoño-Londoño, J., de-Lima, R. V, Lara, O., Gil, A., Pasa, T. C., Arango, G. J. & Ramírez-Pineda, J. (2010). Clean recovery of antioxidant flavonoids from Citrus peel: optimizing an aqueous ultrasound-assisted extraction method. Food Chemistry, 119(1), 81-87. https://doi. org/10.1016/j.foodchem.2009.05.075
Madhuri, S., Hegde, A. U., Srilakshimi, N. S. & Prashith, K. (2014). Antimicrobial activity of Citrus sinensis and Citrus aurantium peel extracts. Journal of Pharmaceutical and Scientific Innovation (JPSI), 3(4), 366-368. DOI: 10.7897/2277-4572.034174
Mahato, N., Sharma, K., Sinha, M. & Cho, M. H. (2018). Citrus waste derived nutra-/pharmaceuticals for health benefits : Current trends and future perspectives. Journal of Functional Foods, 40, 307-316. https://doi.org/10.1016/j. jff.2017.11.015
Marín-Rangel, V. M., Cortés-Martínez, R., Cuevas-Villanueva, R. A., Garnica-Romo, M. G., & Martínez-Flores, H. E. (2012). As (V) biosorption in an aqueous solution using chemically treated lemon (Citrus aurantifolia Swingle) residues. Journal of Food Science, 71(1), 10-14. DOI: 10.1111/j.1750-3841.2011.02466.x.
Martínez, A,. Gutiérrez, S. & Tlenkopatchev, M. A. (2012). Metathesis transformations of natural products: Crossmetathesis of natural rubber and mandarin oil by Ru-alkylidene catalysts. Molecules, 17, 6001-6010. DOI:10.3390/molecules17056001
Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Sánchez-Contreras, A. & Pacheco, N. (2017). Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy, 7(47), 1-19. https://doi. org/10.3390/agronomy7030047
Mahato, N., Sharma, K., Sinha, M., Baral, E. R., Koteswararao, R., Dhyani, A., Cho, M. H. & Cho, S. (2020). Bio-sorbents, industrially important chemicals and novel materials from Citrus processing waste as a sustainable and renewable bioresource: A review. Journal of Advanced Research, 23, 61-82. https://doi.org/10.1016/j.jare.2020.01.007
Muñiz-Márquez, D. B., Rodríguez, R., Balangurusamy, N., Carrillo, M. L., Belmares, R., Contreras, J. C. & Aguilar, C. N. (2013a). Phenolic content and antioxidant capacity of extracts of Laurus nobilis L ., Coriandrum sativum L. and Amaranthus hybridus L . CyTA – Journal of Food: 12(3), 271-276. https://doi.org/10.1080/19476337.2013.847500
Muñiz-Márquez, D. B., Martínez-Ávila, G. C., Wong-Paz, J. E., Belmares-Cerda, R., Rodríguez-Herrera, R. & Aguilar, C. N. (2013b). Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrasonics Sonochemistry, 20, 1149-1154. https:// doi.org/10.1016/j.ultsonch.2013.02.008
Nakajima, V. M., Macedo, G. A. & Macedo, J. A. (2014). Citrus bioactive phenolics: role in the obesity treatment. LWT - Food Science and Technology, 59, 1205-1212. https://doi. org/10.1016/j.lwt.2014.02.060
Nayak, B., Dahmoune, F., Moussi, K., Remini, H., Dairi, S., Aoun, O. & Khodir, M. (2015). Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chemistry, 187, 507-516. https://doi.org/10.1016/j. foodchem.2015.04.081
Pathak, P. D., Mandavgane, S. A. & Kulkarni, B. D. (2015). Fruit peel waste as a novel low-cost bio adsorbent. Reviews in Chemical Engineering, 31(4), 361-381. DOI: 10.1515/ revce-2014-0041
Putnik, P., Bursać-Kovačević, D., Režek-Jambrak, A., Barba, F., Cravotto, G., Binello, A. & Shpigelman, A. (2017). Innovative “green” and novel strategies for the extraction of bioactive added value compounds from Citrus wastes—a review. Molecules, 22(5), 680. DOI: 10.3390/ molecules22050680.
Rafiq, S., Kaul, R., Sofi, S. A., Bashir, N., Nazir, F. & Nayik, A. G. (2018). Citrus peel as a source of functional ingredient: a review. Journal of the Saudi Society of Agricultural Sciences, 17, 351-358. https://doi.org/10.1016/j. jssas.2016.07.006
Sadeghi, A., Hakimzadeh, V. & Karimifar, B. (2017). Microwave assisted extraction of bioactive compounds from food: a review. International Journal of Food Science and Nutrition Engineering, 7(1), 19-27. DOI:10.5923/j.food.20170701.03
Safdar, M. N., Kausar, T., Jabbar, S., Mumtaz, A., Ahad, K. & Saddozai, A. A. (2017). Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of Food and Drug Analysis, 25, 488-500. https://doi.org/10.1016/j. jfda.2016.07.010
Sánchez-Aldana, D., Aguilar, C. N., Nevarez-Moorillon, G. V. & Esquivel-Contreras, J. C. (2013). Comparative extraction of pectin and polyphenols from mexican lime pomace and bagasse. American Journal of Agricultural and Biological Science, 8(4), 309-322. DOI: 10.3844/ajabssp.2013.309.322
Selvamuthukumaran, M. & Shi, J. (2017). Recent advances in extraction of antioxidants from plant by-products processing industries. Food Quality and Safety, 1(1), 61-81. https:// doi.org/10.1093/fqsafe/fyx004
Shie, P. H. and & Lay, H. L. (2013). Component analysis and antioxidant activity of Citrus limon. Academia Journal of Medicinal Plants, 1(3), 49-58.
Soquetta, M. B., Terra, L. D. M. & Bastos, C. P. (2018). Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA - Journal of Food, 16(1), 400-412. https://doi.org/10.1080/19476337.2017.1411978
Tsatsop, R. K. T., Djiobie, G. T., Kenmogne, B. S., Regonne, K. R. & Ngassoum, M. B. (2016). Optimization of microwave-assisted extraction of bioactive compounds from Anogeissus leiocarpus Guill. & Perr. stem bark using response surface methodology. International Journal of Scientific & Technology Research, 5(5), 103-112.
Tumbas, V. T., Ćetković, G. S. & Djilas, S. M. (2010). Antioxidant activity of mandarin (Citrus reticulata) peel. APTEFF, 41(1), 195-203. DOI: 10.2298/APT1041195T
Vergamini, D., Cuming, D. & Viaggi, D. (2015). The integrated management of food processing waste : the use of the full cost method for planning and pricing mediterranean citrus by-products. International Food and Agribussines Management Review, 18(2), 153-172. DOI: 10.22004/ ag.econ.204141
Wang, L. & Weller, C. L. (2006). Recent advances in extraction of nutra- ceuticals from plants. Trends in Food Science and Technology, 17, 300-312. https://doi.org/10.1016/j. tifs.2005.12.004
Wong-Paz, J. E., Muñiz-Márquez, D., Aguilar-Zarate, P., Ascacio-Valdés, J., Cruz, K., Reyes-Luna, C. & Aguilar, C. (2017). Extraction of Bioactive Phenolic Compounds by Alternative Technologies. In A. M. Grumezescu & A. M. Holban (Eds.), Ingredients Extraction by Physicochemical Methods in Food (pp. 229-252). London, United Kindgdom: Academic Press. DOI: 10.1016/B978- 0-12-811521-3.00005-3
Wong-Paz, J. E., Muñiz-Márquez, D. B., Martínez-Ávila, G. C. G., Belmares-Cerda, R. E. & Aguilar, C. N. (2015). Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrasonics Sonochemistry, 22, 474-481. https://doi.org/10.1016/j.ultsonch.2014.06.001
Wu, T., Guan, Y. & Ye, J. (2007). Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection. Food Chemistry, 100, 1573-1579. https://doi.org/10.1016/j. foodchem.2005.12.042
Yousefi, M., Nasrabadi, M. R., Pourmortazavi, S. M., Wysokowski, M., Jesionowski, T., Ehrlich, H. & Mirsadeghi, S. (2019). Supercritical fluid extraction of essential oils. Trends in Analytical Chemistry, 118, 182-193. https://doi. org/10.1016/j.trac.2019.05.038
Zhao, S., Ren, W., Gao, W., Tian, G., Zhao, C., Bao, Y., Cui, J., Lian, Y. & Zheng J. (2020). Effect of mesoscopic structure of citrus pectin on its emulsifying properties: compactness is more important than size. Journal of Colloid and Interface Science, 570, 80-88. https://doi.org/10.1016/j. jcis.2020.02.113.